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Economic experiments are often based on the claim that some heterogeneous
behavioral trait affects response to treatment. This trait is measured in another
part of the experiment, using a multiple price list. Frequently, choices on such a
list are not perfectly consistent.

In this paper we argue that this inconsistency is a resource. It informs the
researcher about the precision with which the trait is measured. Precision can
be estimated with a measurement error model.

With data from an experiment that studies the relation between risk aversion
and punishment we illustrate the approach, and show that it matters.
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1. Introduction
When we run laboratory experiments and when we desire to test or find explanations for
treatment effects, we sometimes combine two parts of an experiment. In one part of the
experiment we measure individual traits. These measurements are used to explain behaviour
in another part of the experiment. Clearly, one can not assume that these measurements
are free of any errors. Traits are unlikely to be stable across situations (Ross, Nisbett and
Gladwell, 2011). They will often only be imperfectly observed in post-experimental tests.
For the econometrician the problem of an explanatory variable that is measured only with

some error is well known as one of “errors in variables”. If wewant to estimate Y = β0+β1ξ+
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u, but we can observe ξ only with an error, e.g. we observe X ∼ N (ξ, σX), then estimating
Y = β0 + β1X + u with standard OLS provides a biased and inconsistent estimator for
β1. Already Adcock (1877) mentions the problem of measurement errors. Since then many
authors have contributed to the discussion (see Gillard, 2010, for an overview).
In the above problem our estimate for β1 is biased towards zero. The measurement error

makes it harder to find an effect if an effect exists. If, nevertheless, we find something, then
the true effectmust be even stronger. In this contextmeasurement errorsmight be considered
harmless.
The situation changes when further variables come into play. Let us assume we have two

explanatory variables, i.e. we estimate Y = β0 + β1ξ1 + β2ξ2 + u. Let us further assume
that ξ1 and ξ2 are positively correlated and ξ1 can only be observed with an error, i.e. we
only observe X1 ∼ N (ξ1, σX1

). Then estimating Y = β0 + β1X1 + β2ξ2 + u with standard
OLS underestimates β1 and overestimates β2. Neglecting the error in measuring ξ1 might
wrongly lead us to believe that ξ2 would matter, even when in reality ξ2 is irrelevant.
Hey and Orme (1994) point out the importance of error in understanding the relation

between preferences and economic decisions. The relevance of measurement errors for risk
preferences has been highlighted in a number of studies (Harrison et al. 2005; Loomes 2005;
Sahm 2012, to name only a few). Kimball, Sahm and Shapiro (2008) use an error in variables
model to interpret survey data on risk tolerance. Beauchamp, Cesarini and Johannesson
(2017) employ a latent variable model to assess the predictive power of risk-attitudes. Gil-
len, Snowberg and Yariv (2018) replicate three influential experimental studies (Niederle and
Vesterlund 2007, Friedman et al. 2014, Halevy 2007), pointing out that in all these studies
accounting for measurement error changes the interpretation of the results.
Still, the number of economic experiments which take into account measurement errors

is small. One reason might be that to correct for measurement errors one has to assess the
magnitude of the error. This assessment requires multiple measurements. If the replication
movement gains momentum, in the futuremore such datasets may become available, and can
be used for estimating measurement error. Yet, multiple measurements are more expensive
and more complicated than single measurements.
The experimental economics community has thus far paid little attention to a much less

costly approach. Behavioral traits can often be measured with multiple price lists, like risk
aversion in the standard test proposed by Holt and Laury (2002). Such a task by construction
requires multiple measurements.
We argue that experimentalists should not force consistency, but should exploit the in-

consistency in reactions to estimate the precision of the measurement. We readily admit
that this procedure is not perfect. Arguably, consistency over time is even lower than con-
sistency in multiple choices presented on the same computer screen. Yet such data enables
experimenters at least to estimate the lower bound of the measurement error problem for
the behavioral trait in question.

To demonstrate our approach we consider the following example: In one part of an exper-
iment we measure participants’ attitudes towards risk with the help of a Holt and Laury
(2002) task. We then use the risk measure as an explanatory variable in a second task, here
behaviour in a public good game with punishment. We show how a joint estimation of both

2



decision processes has two advantages: First, one uses the data from all participants, thus
avoiding a selection bias.1 Second, we can estimate, separately for each participant, the preci-
sion of the measure for her risk attitude. This allows us to take into account the measurement
error. We can show that results change substantially if one respects the measurement error
in the Holt and Laury task.
The remainder of the paper is organized as follows: Section 2 introduces the design of

the example experiment from which the data are taken and that we use to illustrate our
methodological point. Section 3 discusses alternativemethods for dealing with inconsistency
in the measurement of risk attitudes. Section 4 uses simulations to assess the size of the bias
due to the measurement error in a more general context. Section 5 concludes.

2. Design of the Example Experiment
In our example we revisit the data from a four-person repeated public good game with pun-
ishment (Engel, 2014). The experiment was conducted in the Cologne Laboratory for Eco-
nomic Research in 2012. The experiment was implemented in zTree (Fischbacher, 2007).
Participants were invited using the software ORSEE (Greiner, 2004). Of 90 participants 80
were students of various majors with a mean age 25.4. 44% were female. Participants on av-
erage earned 15.11e (19.82$ on the days of the experiment), 14.80e for players in the public
good game, and 16.38e for players with the power to punish (authorities). The experiment
had 3 sessions of 30 participants (6 groups of 4 active participants; 6 passive authorities).
The aim of the experiment was to study the relation between attitudes to risk and the reac-

tion to punishment in a public good game. Fehr and Gächter (2000) show that if participants
in a public good game have the possibility to punish each other, contributions in the public
good game stabilize at a high level.
In the experiment four (active) participants i ∈ {1, . . . , 4} in group k contribute cikt in

round t to a linear public good. A fifth participant a (an authority) has the power to impose
a punishment ηikt on each active participant. Profits πikt of the active participants and πakt

of the authority are given by (1) and (2):

Profit of active participant i: πikt = 20− cikt + .4
∑
i

cikt − 3ηikt (1)

Profit of authority a: πakt = 25+ 20−
∑
i

ηikt (2)

The game is repeated for 11 periods. Participants are rematched every period to matching
groups of size 10.
After the main experiment, Engel (2014) administers (among several other tests) a test

for risk aversion, following Holt and Laury (2002). Holt and Laury design a task where
participants choose between a (safe) lottery with a small spread, p · 2$+(1−p) · 1.6$, and a

1Otherwise one does not estimate the effect of risk aversion on punishing behavior in the population, but the
effect of risk aversion on the punishing behavior of only those individuals whose reactions to risky choices
are highly consistent.
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(risky) lottery with a large spread, p · 3.85$+(1−p) · .1$, where the probability of the good
outcome is p ∈ {.1, .2, .3, . . . , 1}.
In this experiment, Engel (2014) is interested in the impact of punishment on future cooper-

ation. Punishment in the most recent period is the most vivid experience and should have
the strongest effect. The more they are averse to risk, the stronger this signal should guide
choices in the subsequent period: risk averse participants loose more utility when punished
again. Engel (2014) investigates the following hypothesis:

Hypothesis 1 The more a participant is risk averse, the more she increases her contributions
to a linear public good after having been punished in the previous period.

3. How to Deal with an Inconsistent Measure for Risk
Attitudes?

Here, we first explain in Section 3.1 why the standard test for risk aversion by Holt and Laury
makes error in the measurement of this behavioral trait visible. In Section 3.2 we define the
way in which risk aversion matters for the research question of the example experiment. In
Section 3.3 we discuss three different ways of estimating the effect of risk aversion on choices
that ignore measurement error. These methods proceed in two steps. In the first step, for
each participant they generate a point estimate of their risk aversion. In the second step, they
use this estimate as an explanatory variable. In Section 3.4 we contrast these approaches with
our suggested approach. Our apporach has two advantages: (1) for each participant, we do
not only estimate the trait; we also generate an estimate of the precision of this measure. (2)
we jointly estimate (a) the individual behavioral trait, (b) the precision of this estimate, (c) the
impact of the trait on reaction to treatment. As always, joint estimation is more precise, as
individual idiosyncrasies are considered in their relation to each other. This is also why the
approach tends to have more statistical power. At the end of Section 3.4 we briefly compare
selection versus measurement error.

3.1. Measuring risk aversion
To test Hypothesis 1, we need for each active participant a measure of her risk aversion.
Choices in the risk task for the 72 participants holding the active role are shown in Figure
1. Choices where a participant chose the lottery with the larger spread (risky) are denoted
with a ◦, choices where the participant chose the lottery with the smaller spread (safe) are
left blank.
We assume that preferences for money follow CRRA, i.e. u(z) = z1−r. In this case the

critical value of pc where participants are indifferent between the more safe and the more
risky choice is a monotonic function of their relative risk aversion r. We can then either
describe participants by r or by their critical value of pc. In the following we will use pc

ik to
describe preferences of individual i in group k.
In Figure 1. we have ordered participants from the most risk loving on the left to the most

risk averse on the right. If we could describe decision makers by a single switching point pc
ik
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Figure 1: Choices in the risk task
The panel shows choices for each participant: ◦ if the participant choses the lottery with the larger spread
(risky) and nothing if the participant chose the smaller spread (safe). Vertical reference lines denote participants
with inconsistent choices (see (4)). Participants are ordered by their risk attitudes, with the more risk seeking
participants at the left.

then the following holds:

choiceik(p) =


risky if p > pc

ik

either safe or risky if p = pc
ik

safe if p < pc
ik

(3)

We call a participant i in group k consistent if there is a pc
ik which rationalises all choices, i.e.

max{p|choiceik(p) = safe} ≤ pc
ik ≤ min{p|choiceik(p) = risky)} . (4)

We call a participant inconsistent if (4) does not hold, i.e. not all their choices can be ra-
tionalised with Equation (3). In Figure 1 vertical reference lines denote participants with
inconsistent choices. The choices of 18% of the participants in Engel (2014)’s experiment are
inconsistent.
One way to formalise consistent and inconsistent choices in the Holt and Laury task is the

logistic model. The probability of a risky choice of individual ik in lottery p could be written
as follows:

P(riskyik|p) = L ((p− pc
ik) ·

√
τik) with p ∈ {.1, .2, . . . , 1} (5)

Here L is the logistic function, p describes the probability of the good outcome in the Holt
and Laury task, pc

ik is be the critical value where participant ik is just indifferent between the
two choices, and σik(p

c
ik) = 1/

√
τik is the standard deviation of the latent utility of subject

ik in the Holt and Laury task.
While τik = ∞ and, thus, σik(p

c
ik) = 0 would guarantee us consistent choices, we will

show below that a value for σik(p
c
ik) between about 0.16 and 0.25 describes behaviour better.

The larger σik(p
c
ik), the more frequent are inconsistent choices.

One possible reaction to inconsistent choices is using an alternative test that forces consist-
ency. Eckel and Grossman (2008) directly ask participants for the switching point. Depend-
ing on the research question, this may be satisfactory. However, by enforcing consistent
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choices for pc
ik we lose information about the decision maker’s precision τik of that choice.

Below we will argue that information about this precision may be useful.
Before we do this, let us come to the contributions in the public good game.

3.2. Contributions to the public good
To test Hypothesis 1 we have to explain changes in the contribution to the public good ∆cikt
as a function of previous punishment η and risk aversion pc

ik. We eventually want to estimate
the following model:

∆cikt = β0 + βηηik,t−1 + βpp
c
ik + βη×p ηik,t−1 · pc

ik + νk + ν ′
ik + ϵikt (6)

∆cikt is the change of contribution to the public good of individual i from matching group k

at time t. ηik,t−1 is the punishment received by individual i from group k at time t−1, i.e. the
punishment received in the previous period. pc

ik is a measure for risk aversion of individual
i from group k. νk is a random effect for group k. ν ′

ik is a random effect for individual i from
group k. ϵikt is the residual. In line with Hypothesis 1 we expect the interaction term βη×p

to be positive.

In the example study, the aim is to explain reactions to punishment as a function of the atti-
tude towards risk. The latter is described as a switching point pc

ik in the Holt and Laury task.
In Section 3.3 we briefly discuss four alternative approaches to deal with inconsistent choices.
All four approaches can be used to estimate contributions in the public good task (Equation
6), but all assume that switching points pc

ik could be measured with infinite precision. As
a result all four approaches neglect the measurement error. In Section 3.4 we estimate the
decision process determining switching points pc

ik jointly with contributions (Equation 6).
This approach offers a solution for the measurement error.

3.3. No correction for the measurement error
In this section we present three procedures (DROP, COUNT, and LOGIS) which all take es-
timated switching points as given and which all disregard the measurement error. In Section
3.4 below we will discuss two procedures (B-JOINT and B-JOINT-DROP) which integrate the
measurement error in the estimated switching points.

3.3.1. Drop inconsistent observations (DROP)

This procedure removes from our sample the 18% of the participants which are inconsistent
according to (4). In Figure 2 these are the participants which are crossed out by a vertical
dashed line. For the remaining 82% of our participants we define the switching point as
follows:2

p̂c,D
it =

max{p|choiceik(p) = safe}+min{p|choiceik(p) = risky)}
2

(7)

2Technically, the following expression could also be computed for subjects with multiple switching points.
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Figure 2: Choices and switching points pc
ik.

The bottom panel shows for each participant the actual choices: ◦ if the participant chose the more risky lottery.
Participants are ordered by their risk attitudes, with the more risk seeking participants at the left.. The dashed
line shows the estimated switching points pc

it from LOGIS. Vertical reference lines denote participants with
inconsistent choices, i.e. with more than one switching point. The top panel shows the estimated value of β1

from the estimation of the switching point with LOGIS (Equation 9).

Figure 2 suggests that inconsistent behaviour could be more likely with risk seeking par-
ticipants. The DROP procedure might, hence, selectively remove risk seeking participants
from the sample. It also does not tell us anything about the precision of pc

ik, i.e. it does not
help us to address the measurement error.

3.3.2. Counting the number of safe choices (COUNT)

Holt and Laury (2002) propose to replace the switching point for inconsistent participants
by simply counting the number of safer choices. To ease the comparison with the other
measures we use the following linear transformation:

p̂c,C
it =

1

20
+

1

10

∑
p

[choiceik(p) = safe] (8)

Figure 2 shows the resulting estimates of risk preferences as a thick dotted line. This proced-
ure avoids inducing the selection bias resulting from dropping inconsistent responders.

3.3.3. A logistic regression to estimate switching points (LOGIS)

In Equation (5) we have used the logistic model to describe choices in the risk task. We can
rephrase this model as follows:

P(riskyik|p) = L (β0,ik + β1,ikp) where p ∈ {.1, .2, . . . , 1} (9)

The value of p where the P(riskyik|p) = 1/2, i.e. where individual i in group k chooses the
more risky and the safer lottery with equal probabilities, is our estimated switching point
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p̂c,L
ik . It is given by

p̂c,L
ik = −β̂0,ik/β̂1,ik . (10)

The dashed line in the bottom part Figure 2 shows for each individual the critical value p̂c,L
ik

obtained with this method.3 The top panel in Figure 2 shows the value of β1 from the es-
timation of the switching point with LOGIS (Equation 9). These estimates for β1 are either
close to positive or negative infinity, or close to zero, i.e. LOGIS implies either a very clear
preference (when β1 is large in absolute terms) or indifference (when β1 is close to zero. As
Figure 2 demonstrates, the results obtained with LOGIS are similar to COUNT, except for
participants 5 and 42.4 The top part of the same figure shows for each individual the coeffi-
cient β̂1,ik. When this coefficient is large, then P(riskyik|p) is either close to 1 or close to 0
for most values of p. A large coefficient is, hence, a measure of consistency. When we use
maximum likelihood to estimate the switching point (Equation 9) we should expect that for
consistent choices β̂1,ik → ∞. Since numerical precision is limited we find for consistent
choices in our estimation 605 ≤ |β̂1,ik| ≤ 613 which is clearly smaller than +∞, but already
sufficiently large to make sure that the actual choices are made almost with certainty.5 Still,
we should keep inmind that it is only numerical imprecision which yields finite values where
we should see a +∞.
Looking at Figure 2 again we see two (related) problems:

1. For the 18% inconsistent choices we have β̂1,ik ≤ 13. These choices are clearly more
noisy than the 82% consistent choices with β̂1,ik ≥ 605 but it is not obvious how to
exploit this difference in precision in our estimate of contributions in the public good
task (Equation 6).

2. The estimation of the switching point with LOGIS (Equation (9)) yields for two parti-
cipants (5 and 42) negative values for β̂1 (−6.1 and −610). These participants choose
the safer lottery more frequently when the probability of the good outcome is larger.
The LOGIS model does not tell us how to interpret such, seemingly perverse, choices.

We will argue below that these 18% inconsistent participants can serve two purposes. First,
although their observations are noisy, dropping them would lead to a selection bias. Second,
and more importantly, the noise of these observations allows us to take into account the
measurement error. If 18% of our participants clearly violate consistency, we should, perhaps,
not expect that we can measure the remaining 82% with infinite precision. The inconsistent
18% will allow us to better assess the precision of the remaining 82% consistent observations.

3Figure 1 shows that we have 13 inconsistent participants in the dataset. We have no participants who,
independent of p, always choose the risky lottery. These participants would correspond to p̂c,L

ik < 0. We
have two participants who always choose the safe lottery. They correspond to p̂c,L

ik > 1.
4Since the logistic model is not fully identified it is only a convenient artefact of the numerical implementation

to find a unique answer to the question for the optimal switching point. If a participant has chosen the safer
lottery for all choicesp ≤ .6 and themore risky lottery for all choicesp ≥ .7, the logistic model will estimate
a switching point just in the middle between .6 and .7 at almost exactly .65.

5If a participant is just indifferent at pc, i.e. β0 + β1p
c = 0, then the next actual choice in the experiment

is made for p = pc + 1/20 and p = pc − 1/20. The probability of a safe or risky choice there is, hence,
L(β1,ik/20) and L(−β1,ik/20). For β1,ik = 605we have L(605/20) ≈ 1−7.29×10−14, L(−605/20) ≈
7.29× 10−14.
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DROP
β 2.5% 97.5%

0 -1.267 -2.776 0.171
η 1.356 0.663 2.050
p 1.130 -0.944 3.291

η× p -1.172 -2.198 -0.145
σ2 σ 1/σ2

ν ′
ik 0.000 0.000 Inf
νk 0.287 0.536 3.483

ϵikt 10.381 3.222 0.096

COUNT
β 2.5% 97.5%

-0.809 -2.025 0.423
1.208 0.699 1.702
0.457 -1.322 2.190
-0.909 -1.632 -0.166

σ2 σ 1/σ2

0.000 0.000 Inf
0.375 0.612 2.666

10.296 3.209 0.097

LOGIS
β 2.5% 97.5%

-0.732 -1.962 0.496
1.189 0.673 1.692
0.339 -1.427 2.085
-0.876 -1.608 -0.126

σ2 σ 1/σ2

0.000 0.000 Inf
0.379 0.616 2.638

10.301 3.210 0.097

Table 1: MLE Estimates of Contribution Changes Conditioning on Switching Points (Equa-
tion 6).

For each of the three procedures (DROP, COUNT, LOGIS) the top part of the tables provide the estimated effect
β as well as a 95% confidence interval. The bottom part reports variance (σ2), standard deviation (σ) and
precision (1/σ2) for the individual specific random effect (ν ′

ik), the group specific random effect (νk) and the
residual (ϵikt).

3.3.4. Estimation results for DROP, COUNT and LOGIS

Table 1 shows the estimation results for the impact of risk aversion on the reaction to past
punishment. The table compares different ways to deal with inconsistent observations.6 We
see that, regardless which method we use here, the differences are not very large. We find
βη between 1.19 and 1.36, βp is never significant and between 0.339 and 1.13, and β̂η×p

somewhere between -1.17 and -0.876.
Irrespective of the estimation procedure, a perfectly risk loving subject (pc = 0) increases

her contributions by more than 1 unit in response to any unit of punishment she has re-
ceived in the previous period. The more the participant is risk averse, the less intense her
reaction. Yet even a perfectly risk averse participant (pc = 1) still exhibits a small increase
of contributions in reaction to punishment (0.184 ≤ βη + βη×p ≤ 0.313 depending on the
model).

3.4. Accounting for the measurement error – joint estimation of
switching points and contributions

The previous three procedures (DROP, COUNT, and LOGIS) all take estimated switching
points pc

ik as given. Their estimate of the impact of pc
ik on contributions ∆cikt in Equation

(6) does not take into account the measurement error of switching points pc
ik in Equation (5).

In this section we suggest that much can be gained if both problems are estimated together.
We will use a Bayesian approach. We do not want to enter a discussion on the comparative

6For LOGIS we present estimation results which are based on a ML approach. We could also use a Bayesian
approach to estimate contributions in the public good task (Equation 6) and we would find very similar
results. Only when we estimate switching points (Equation 5) together with contributions (Equation 6)
results change (see Section 3.4).

9



merits of the Bayesian versus the frequentist framework (Bayarri and Berger, 2004, or Kass,
2011 may provide a starting point for a discussion).
In the frequentist world the problem that we outline below could be described as a general-

ised multilevel structural equation (Rabe-Hesketh, Skrondal and Pickles, 2004). Neyman and
Scott (1948) and Solari (1969) have pointed out deficiencies in the maximum likelihood ap-
proach to estimate models with measurement errors. Bayesian estimation has been shown
to work well in the context of measurement errors for a long time and for a wide range
of situations.7 During the last decades Markov chain Monte Carlo methods have become a
powerful and accessible tool for Bayesian inference. Thus, the Bayesian approach lends itself
particularly well to estimate models with measurement errors.
Here we employ the Bayesian approach, in particular since it facilitates a transparent de-

scription of the two processes we want to estimate jointly. To ease the comparison with the
frequentist framework we base our estimations on vague priors.8 We will present the joint
model in Section 3.4.1.9 We will then show in Section 3.4.2 that, once the measurement error
is taken into account, results change substantially.

3.4.1. The joint model

Likelihoods: The likelihood of the Holt and Laury task is given by Equation (5). We re-
write Equation 6 for contributions in the public good task to obtain the likelihood as follows:

∆cikt ∼ N (β0 + βηηik,t−1 + βpp
c
ik + βη×p ηik,t−1 · pc

ik + νk + ν ′
ik, 1/

√
τϵ) (11)

Priors: Estimating a Bayesian model requires fully specifying parameters and hyperpara-
meters.11 We deliberately make conservative choices and use the following vague priors:

For the coefficients from Equation (11):
βl ∼ N (0, 100) with l ∈ {0, η, p, η× p} (12)

7Arminger and Muthén (1998), Dellaportas and Stephens (1995), Florens, Mouchart and Richard (1974) and
Polasek and Krause (1993).

8For a frequentist analysis the Stata package gllamm or the R package lavaan might be useful.
9We use R version 3.6.0 (2019-04-26) with JAGS 4.3.0 to estimate Bayesian models. Estimates are

based on 4 chains with each 1000 samples for adaptation, 4000 samples for burnin, and then, for each of the
four chains, 100000 actual samples per chain.10 To estimate the mixed effects model we use lme4 1.1-19.
Frequentist confidence intervals are based on normal bootstraps with 1000 samples.

11We use N (µ, σ) for the normal distribution, Γ(α,β) for the Gamma distribution and B(α,β) for the Beta
distribution. The second argument ofN (µ, σ) is the standard deviation. τ = 1/σ2 is the precision. The first
argument of Γ(α,β) is shape α, the second is rate β. There are a number of standard options to model a
vague prior for the precision τ of random effects and of residuals. Here we assume that τ follows a Gamma
distribution with mean and dispersion following a Gamma distribution, too. Alternatives would include a
Gamma distribution with fixed shape and rate parameters or a truncated t distribution. In our experience
the specific choice does not substantially affect the estimation resuts for coefficients. However, convergence
(measured as psrf) with hyperparameters that follow a Gamma distribution themselves is much better than
fixed hyperparameters. For the prior for the switching point of the risk task pc

ik we use a Beta distribution,
again with parameters α and β following a Gamma distribution. Figure 6 in Appendix A should illustrate
that the prior for pc

ik is (almost) uniform..
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The group specific random effect in Equation (11):
νk ∼ N (0, 1/

√
τν); with τν ∼ Γ(m

2
ν/d

2
ν,mν/d

2
ν);mν ∼ Γ(1, 1); dν ∼ Γ(1, 1) (13)

The individual specific random effect in Equation (11):
ν ′
ik ∼ N (0, 1/

√
τν ′); with τν ′ ∼ Γ(m

2
ν ′/d

2
ν ′,mν ′/d2

ν ′);

mν ′ ∼ Γ(1, 1); dν ′ ∼ Γ(1, 1) (14)
For the switching point from the risk task, Equation (5)

pc
ik ∼ B(αc, βc) with αc ∼ Γ(2, 1/2);βc ∼ Γ(2, 1/2) (15)

For the precision of the switching point from Equation (5):
τik ∼ Γ(m

2/d2,m/d2); with m ∼ Γ(1, 1); d ∼ Γ(10, 1) (16)
The precision of the change in contribution in Equation (11):

τϵ ∼ Γ(m
2
ϵ/d

2
ϵ,mϵ/d

2
ϵ); with mϵ ∼ Γ(1, 1); dϵ ∼ Γ(1, 1) (17)

While this notation might look a bit intricate for the novice, priors and likelihoods can in a
straightforward way be represented in JAGS or BUGS.12 In Appendix B we provide the code
for a stylised example.

3.4.2. B-JOINT

If we assume uninformative priors, we can of course replicate LOGIS with Bayesian meth-
ods.13 The critical advantage of the Bayesian approach lies in the flexibility it provides in
jointly estimating risk aversion, the precision of this measurement, and the treatment ef-
fects. We joinly estimate switching points (Equation 5) and contributions in the public good
task (Equation 11). This approach automatically weighs the individual estimates of the risk
attitude by their precision and, thus, takes into account the measurement error.
With this estimation strategy, we focus on what we are really interested in: how hetero-

geneous risk aversion affects choices in the main experiment. B-JOINT treats risk aversion
and the precision of its measurement as a latent variable over which it integrates. The pos-
sibility to do so in a transparent and computationally feasible way is the main advantage of
the Bayesian approach.14 In Appendix B we provide the code for a stylised example. Priors
are as given by Equations (12)-(17).

Contributions in the public good task (Equation 11): Estimation results (for the entire
data set with 72 observations) are shown in the left part of Table 2. Figure 4 shows the highest
posterior density (HPD) and confidence intervals for our estimates. The Figure illustrates the
bias when not correcting for errors in the measurement of risk.
Figure 6 in Appendix A shows prior and posterior distributions for ατ, βτ and pc

ik. Figure 7
in Appendix A illustrates the posterior precision τik. The figure confirms again that precision
in any multiple price-list is limited. This limited precision can affect estimation results.

12See http://www.kirchkamp.de/research/errorsInVar.html
13Code and estimations are available from the authors upon request.
14Formore information on the empirical distribution of precision in our example dataset, and further discussion

of these estimates, please see Appendix A.
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Figure 3: Choices, switching points pc
ik and their standard deviation.

The bottom panel shows for each participant the actual choices: ◦ if the participant chose the more risky
lottery. Participants are ordered by their median switching points pc

ik as estimated from the B-JOINT model.
The solid line denotes the median estimated switching points pc

ik from B-JOINT. The dashed line shows the
estimated switching points from LOGIS. Vertical reference lines denote participants with inconsistent choices,
i.e. with more than one switching point. The top panel shows the estimated values of the standard deviation
σik(p

c
ik) = 1/

√
τik, from B-JOINT.

B-JOINT B-JOINT-DROP
Mean 2.5% 97.5% SSeff psrf

0 -1.765 -2.921 -0.513 3916 1.0002
η 3.248 2.223 4.325 3891 0.9999
p 1.745 0.253 3.445 4000 1.0001

η× p -3.640 -5.099 -2.114 4334 0.9998
τν 6.894 1.486 16.797 4411 1.0022
τ ′
ν 2.330 0.456 5.053 4265 1.0004
τϵ 0.109 0.097 0.122 4000 0.9999

Mean 2.5% 97.5% SSeff psrf
0 -2.479 -4.044 -1.052 3843 1.0007
η 4.248 2.982 5.468 3913 1.0010
p 2.785 0.725 4.857 3905 1.0013

η× p -5.156 -6.883 -3.256 4105 1.0010
τν 5.433 1.024 12.669 4041 1.0002
τ ′
ν 2.551 0.402 5.439 4257 1.0004
τϵ 0.114 0.100 0.128 4000 1.0004

Table 2: Bayesian Estimates of Contribution Changes (Equation 11) Conditioning on switch-
ing points (Equation 5).

Each row in the table reports mean values, 95% credible intervals, and (to assess convergence) effective sample
size (SSeff) and potential scale reduction factor (psrf). These values are reported for the coefficients of Equation
11 and the precision (τ) of random effect terms and residuals. The joint estimation corrects for the measurement
error. The B-JOINT model uses all data (left table). B-JOINT-DROP uses only consistent participants (right
table). We sample from 4 chains with 1000 samples each.
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The joint estimate of B-JOINT finds (in absolute terms) a substantially larger effect size
for βη×p (-3.64) than the estimates we got from the models where we did not control for the
measurement error (between -1.17 and -0.876). In other words: Correcting for the measure-
ment error (and thereby weighting the individual measure of risk attitude with its precision)
changes the effect size by 210%.

Switching points (Equation 5): Figure 3 shows the predicted switching points pc
ik as a

solid line. The B-JOINT estimate for pc
ik follows the estimates based on COUNT or LOGIS, in

particular for the central values of pc. For participants where LOGIS and COUNT estimate
more extreme values of pc, B-JOINT takes a more conservative approach. E.g. the extreme
risk aversion of the rightmost participants in Figure 3 is not really in line with the distribu-
tion of the remaining values of pc

ik. B-JOINT estimates, hence, a smaller precision τik, and,
accordingly, adjusts the value of pc

ik more towards the centre of the distribution.
For individuals 5 and 42 (those, who choose the safer lottery more frequently when the

probability of the good outcome was larger) the estimation of the switching point with LO-
GIS (Equation 9) finds a negative slope β1 and, hence, a switching point which is economic-
ally meaningless. Without taking into account the measurement error, this switching point
enters the estimation of contribution effects (Equation 6) with the same weight as any other
observation. In contrast, the Bayesianmodel estimates for these two observations a precision
τik very close to zero.
The top panel in Figure 3 shows the estimated standard deviations σik(p

c
ik) = 1/

√
τik for

switching points of each subject (Equation 5). Comparing with the top panel from Figure
2, we see that the B-JOINT estimates are more differentiated than LOGIT. While the LOGIT
implies either a clear preference or clear indifference, the B-JOINT estimates for standard
deviation σik show a more detailed picture of deviation from utility maximising behaviour.
For the consistent choices the estimated parameter for σik is small with a median value of
0.165. For the inconsistent choices σik covers a range from 0.168 to 0.254.

Selectionbias versusmeasurement error: If experimental economists have participants
withmore than one switching point in their dataset, they often react by dropping theses data-
points from the analysis altogether. This approach creates an obvious selection problem. The
inconsistent participants might exhibit reactions to treatment that systematically differ from
the reactions of other participants with at most one switching point. As we have explained
in Section 3.3, this potential bias can be addressed by using COUNT or LOGIS. Yet, for estim-
ating the population reaction to treatment, COUNT and LOGIS put the same weight on the
risk aversion estimates from all participants. While the approach avoids selection, it poten-
tially overestimates the relevance of reactions from inconsistent participants in the sample
for estimating the population effect. By contrast the Bayesian approach holds the balance. It
does not ignore choices from inconsistent participants (and thereby avoids selection), but it
weights information from the sample by the individual precision of the measurement. This
cautious approach is particularly important if the best guess about the degree of risk aversion
of inconsistent participants, or of their reaction to risk aversion when exposed to treatment,
is at the limit of the support. Taking this information into account without downgrading
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Figure 4: Highest posterior density and confidence invervals for contribution effects (Equa-
tion 6).

The figure shows 95% confidence intervals for the mixed effects model based on LOGIS, DROP and COUNT
estimates for pc

ik. The figure also shows 95% HPD intervals for two specifications of the Bayesian model:
B-JOINT-DROP, the joint model based on only consistent choices, and B-JOINT, the joint model for all choices.

its importance could introduce bias (from outliers), rather than reducing bias. Actually this
concern materializes in our example dataset. As Figure 2 shows, participants who accept
high risk gambles are systematically more likely to be inconsistent.
Whether selection or measurement error is a more important source of bias of course de-

pends on the particularities of the sample. In our example dataset selection happens to be a
small problem, while measurement error is a large problem. Table 2 compares the two cases:
B-JOINT is based on all observations in the sample. Results are show in the left part of Table
2. B-JOINT-DROP is based on the same model, but shows results only for the 59 consistent
observations. The comparison of these two models, B-JOINT and B-JOINT-DROP, allows
us to decide whether our results are mainly driven by accounting for the measurement er-
ror or by avoiding a selection bias. Both models take into account the measurement error.
Both models come to substantial effect sizes for η× p: -5.16 for B-JOINT-DROP, and -3.64
for B-JOINT. Only B-JOINT avoids the selection bias. Above we have seen that accounting
for measurement errors changes the coefficent βη×p by 210%. The selection bias, i.e. the
difference between B-JOINT and B-JOINT-DROP, affects the effect size by only 30%.

4. Simulation
Should one take into account measurement errors? The above result seems to suggest that
such a correction is desirable, but how general is this finding? Here we simulate 100 times a
sample that is similar to the one we studied above. Each sample has a size of 100 participants
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Figure 5: Simulation results: Bias
The figure shows 25%, 50%, and 75% quantiles of a B-spline (df=5) for the bias β̂η×p−βη×p and for the different
models.

which come in 25 groups.
Behaviour in the risk task follows the logistic model from Equation (5). Contributions in

the public good game follow Equation (11). The parameters of the regression are random and
in the same order of magnitude as in our experiment: βl ∼ N (0, 2) for l ∈ {0, η, p, η× p}.
The random effects have a similar variance: νk ∼ N (0,

√
1/5), ν ′

ik ∼ N (0,
√

2/7), ϵikt ∼

N (0,
√
10). The risk aversion also follows a distribution similar to the one in our experiment:

pc
ik ∼ B(6.98, 3.63), τik ∼ Γ(0.847, 0.2).
For each of the 100 simulations we obtain an estimate for the contribution effects (Equation

6). Here we are specifically interested in βη×p. Figure 5 shows for both methods COUNT and
B-JOINT quartiles of the difference between the estimates and the true values, β̂η×p −βη×p.
We see that B-JOINT performs fairly well. The difference β̂η×p − βη×p is close to zero. The
estimates of COUNT are clearly biased. They are too large in the negative and too small in
the positive domain. This bias is what we should expect if measurement errors are neglected.

5. Conclusion
We are clearly not alone in recommending that measurement errors should be taken into
account in experimental research. Researchers might have the impression, however, that
accounting for measurement errors with repeated measurements is tedious and expensive.
Many researchers seem to assume the problem away.
The aim of this paper is to convince the experimental community that it makes sense to

take measurement errors seriously, and that it is possible to correct for the resulting bias in a
straightforward and simple way, without making the experimental design more complicated.
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Here we take advantage of the fact that a single Holt and Laury task is, actually, a multiple
price list task, i.e. the task already contains multiple measures. The fact that the Holt and
Laury task asks each participant to take multiple risky choices is not a nuisance. It enables
the researcher to assess the precision of his or her instrument.
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A. Posteriors for ατ, βτ and pc
ik

Figure 6 shows the prior and posterior distribution forpc and for the parametersατ = m2/d2,
βτ = m/d2 which determine the distribution of τik. In Equation (15) we assume pc

ik follows
a Beta distribution with parameters αc and βc following a Gamma distribution (so that a
priori pc

ik follows an almost uniform distribution). The median of the posterior parameters
areατ = 7.8 andβτ = 3.9, i.e., as we also see in the Figure, participants do avoid the extreme
values of pc and, not surprisingly, are more risk averse than risk loving.
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Figure 6: Posteriors for ατ, βτ and pc
ik

In Equation (16) we assume that the precision τik = 1/σ2
ik is drawn from a Gamma distri-

bution. The median of the posterior shape parameter of this distribution is α = 7.14 and the
median of the posterior rate parameter is β = 0.209. Figure 7 shows the posterior distribu-
tion of σik as well as the median values of σik for the individual participants. Conceptually,
this is not entirely trivial. Often we assume that “consistent” choices are infinitely precise,
i.e. σik = 0. However, if some choices, here 18% of all participants, are inconsistent, i.e.
contain a substantial lack of precision (0.168 ≤ σik ≤ 0.254), it would be foolish to assume
that the remaining 82% choices are infinitely precise.
How can we assess the precision of choices? In Figure 7 we see how the estimator uses the

18% inconsistent observations as a handle to determine the left part of the distribution of σik.
The value of σik = 0.165 for the median consistent decision maker results from the discrete
steps in the Holt and Laury (2002) task which implies a finite precision for the consistent
choices.

B. Example code
In this section we want to demonstrate how measurement errors can be taken into account
in practice. We generate some random data. Then we explain how the parameters of the
data generating process can be estimated with R (R Development Core Team, 2018) and JAGS
(JAGS:43). We assume two types of measurements:

1. In a first stage of the experiment (stage A) a number of binary choices are used to
measure a subject specific property, e.g. an attitude towards risk. This measurement
contains some noise.
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Figure 7: Standard deviation σik of choices.
The solid line show the posterior distribution of σik = 1/τ2ik as in Equation (16). The dashed line shows the
distribution of the median of σik taken for each participant. The dotted horizontal line denotes the share of
82% consistent observations. The dotted vertical line denotes σik = 0.165 for the median consistent decision
maker.

2. In a second stage of the experiment (stage B) some other behaviour is measured. The
noisy measurement from stage A of the experiment is used as an explanatory variable
in the second experiment.

In the following we use R version 3.6.0 (2019-04-26). We use runjags 2.0.4-2 to interface
with JAGS 4.3.0.

library(runjags)

We use plyr to generate data for the example.

library(plyr)

We initialise our random number generator and generate some data:

set.seed(1)

We simulate a data set with 40 participants.

N<-40

Task A is based on 10 binary choices:
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choiceNum.A<-10 ## number of choices in A
sid.A<-1:N ## subject IDs
thresh.A<-sort(choiceNum.A*rbeta(N,6.98,3.63)) ## (latent) threshold for

##each subject; here we sort the individuals for convenience
tau.A<-rgamma(N,0.847,.2) ## (latent) precision of each individual for task A
data.A<-rbind.fill(lapply(1:N,function(sid) {

choice.A<-rbinom(choiceNum.A,1, ## observable choices
plogis(((1:choiceNum.A)-thresh.A[sid])*sqrt(tau.A[sid])))

data.frame(list(sid=sid,choice.A=choice.A,task.A=1:10)) }))

The following plot shows the 10 tasks on the vertical axis and the 40 individuals on the
horizontal axis. Binary choices are shown as either ◦ or blank. The solid line denotes the
(latent) true preference thresh.A for each individual.

with(subset(data.A,choice.A==1),plot(sid,task.A))
lines(sid.A,thresh.A)
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The 16 subjects whose choices are inconsistent are marked with a vertical red line.

B.1. Independent observations for stage B
We start with the case of independent observations for stage B. Each subject generates one
observation. Let us assume that, in addition to the measurement from stage A, we have two
controls, x1 and x2. The simulated data in stage B is generated as follows:

sid.B<-1:N
x1.B <- runif(N) ## control variable
x2.B <- runif(N) ## control variable
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eps.B<- rnorm(N,0,sqrt(1/sqrt(.1))) ## residual
X.B <- cbind(1,x1.B,x2.B,thresh.A) ## design matrix
beta <- rbind(-1,1,0,-1) ## arbitrary coefficients
y.B <- c(X.B %*% beta + eps.B)

The last two lines define β for our linear relationship and calculate the dependent variable
y.B = X.Bβ+ eps.B.
Now we prepare the data for JAGS:

sData<-as.list(data.A)
sData[["choiceNum.A"]] <- choiceNum.A
sData[["y.B"]]<-y.B
sData[["X.B"]]<-X.B ## demeaning does not help convergence here
sData[["K"]] <- ncol(X.B) ## easier to determine size of beta here
sData[["latentA"]] <- 4 ## latent variable is 4th column
sData[["X.B"]][,4]<-NA ## we can't observe the latent variable

We use the following model in BUGS notation:

small.mod <- 'model {
# binary choices in A:
for (i in 1:length(choice.A)) {

choice.A[i] ~ dbern(p[i])
logit(p[i]) <- (task.A[i] - choiceNum.A*thresh.A[sid[i]]) *

pow(tau.A[sid[i]],.5)
}
# individual choices in B (here one choice per individual):
for (i in 1:length(y.B)) {

y.B[i] ~ dnorm(inprod(X.B[i,],beta),tau.B)
X.B[i,latentA] <- choiceNum.A*thresh.A[i] # estimate for latent var.

}
# subject specific:
for (s in 1:max(sid)) {

thresh.A[s] ~ dbeta(a.A,b.A) # switching point
tau.A[s] ~ dgamma(s.A,r.A) # precision switching point

}
# parameters for switching point:
a.A ~ dgamma(2,1/2) # switching point
b.A ~ dgamma(2,1/2) # switching point
s.A <- (m.A*m.A)/(d.A*d.A) # prec. switching point
r.A <- m.A/(d.A*d.A) # prec. switching point
m.A ~ dgamma(1,1) # prec. switching point
d.A ~ dgamma(10,1) # prec. switching point
## residuals:
tau.B ~ dgamma(mTB*mTB/(dTB*dTB),mTB/(dTB*dTB))
mTB ~ dgamma(1,1)
dTB ~ dgamma(1,1)
## coefficients:
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for (k in 1:K) {
beta[k] ~ dnorm (0,.0001) # prior fixed effect for beta

}
}'

Here the expression following # binary choices in A: corresponds to task A:

P(“success”|p) = L ((p− pc
i ·

√
τi)

Different choices in the multiple price list task would be denoted by p. A “success” would be
a specific type of a choice (e.g., the more risky choice in the Holt and Laury (2002) task.
The expression following # individual choices in B: corresponds to task B:

Y = β0 + β1X1 + β2X2 + β3p
c
i + ϵi

Here we assume that tau.A[s] follows a Gamma distribution with hyperparameters s.A
and r.A which are again chosen such that the distribution for tau.A[s] has a mean which
follows a Gamma distribution and also a dispersion which follows a Gamma distribution.
Chosing fixed hyperparameters does not change estimation resultsmuch, but seems toworsen
convergence in our experience.
In this example we are using four different chains:

runjags.options(silent.jags=TRUE,silent.runjags=TRUE,method="parallel",
modules="glm",predraw.plots=FALSE)

initJags<-list()
initJags[[1]]<-list(.RNG.seed=1,.RNG.name="base::Mersenne-Twister")
initJags[[2]]<-list(.RNG.seed=2,.RNG.name="base::Super-Duper")
initJags[[3]]<-list(.RNG.seed=3,.RNG.name="base::Wichmann-Hill")
initJags[[4]]<-list(.RNG.seed=4,.RNG.name="lecuyer::RngStream")

To confirm that we have a sufficiently vague prior for stage A we look at the distribution
of thresh.A, i.e. the thresholds for the case of no data:

thresh.jags<-run.jags(model=small.mod,within(sData,{y.B<-NA;choice.A=NA}),
monitor=c("thresh.A"),n.chains=4,inits=initJags,sample=100)

thresh.df<-data.frame(as.mcmc(thresh.jags))

The following plot shows the cumulative distribution of thresh.A.

plot(ecdf(unlist(thresh.df)))
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The distribution is almost a straight line, i.e. with our prior all threshold values are almost
equally likely.
In a next step we use the same model, now with data for choices in stage A and B:

run.jags(model=small.mod,data=sData,monitor=c("beta"),n.chains=4,inits=initJags)

JAGS model summary statistics from 40000 samples (chains = 4; adapt+burnin = 5000):

Lower95 Median Upper95 Mean SD Mode MCerr MC%ofSD
beta[1] -4.8177 -0.97878 2.9369 -0.96509 1.9712 -- 0.027153 1.4
beta[2] -0.49231 1.555 3.5872 1.5472 1.0405 -- 0.0067797 0.7
beta[3] -2.3593 -0.38987 1.6219 -0.38618 1.0175 -- 0.0069433 0.7
beta[4] -1.499 -0.97826 -0.42573 -0.98024 0.27311 -- 0.0041521 1.5

SSeff AC.10 psrf
beta[1] 5270 0.11439 1.0004
beta[2] 23553 0.0056848 1.0004
beta[3] 21474 0.0021126 1.0001
beta[4] 4326 0.14232 1.0005

Total time taken: 14.5 seconds

B.2. Repeated observations for stage B
Let us next simulate data with repeated observations for stage B. Here we assume that we
have matching groups of size 4. Furthermore, each participant makes not one, but 2 choices.
We introduce one random effect νk for the group and one random effect for the subject ν ′

ik.
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Y = β0 + β1X1 + β2X2 + β3p
c
ik + νk + ν ′

ik + ϵikt

The data for stage B is simulated as follows:

groups.B <-4
choiceNum.B <-2
sid.B<-rep(1:N,each=choiceNum.B) ## subject ID
gid.B<-sid.B %% groups.B + 1 ## group ID
x1.B <- runif(N*choiceNum.B)
x2.B <- runif(N*choiceNum.B)
eps.B<- rnorm(N*choiceNum.B,0,sqrt(1/sqrt(.1))) ## residuals
nu1.B<- rnorm(groups.B,0,sqrt(1/5))[gid.B]## random effect for each group
nu2.B<- rnorm(N,0,sqrt(1/3.5))[sid.B] ## random effect for each subject
X.B <- cbind(1,x1.B,x2.B,thresh.A) ## design matrix
beta <- rbind(-1,1,0,-1) ## arbitrary coefficients
y.B <- c(X.B %*% beta + nu1.B + nu2.B + eps.B)

Now we prepare the data for JAGS:

lData<-as.list(data.A)
lData[["choiceNum.A"]] <- choiceNum.A
lData[["sid.B"]]<-sid.B
lData[["gid.B"]]<-gid.B
lData[["y.B"]]<-y.B
lData[["X.B"]]<-X.B ## demeaning X.B is not necessary here
lData[["K"]] <- ncol(X.B) ## easier to determine size of beta here
lData[["latentA"]] <- 4 ## latent variable is 4th column
lData[["X.B"]][,4]<-NA ## we can't observe the latent variable

We use the following model in BUGS notation:

large.mod <- 'model {
# binary choices in A:
for (i in 1:length(choice.A)) {

choice.A[i] ~ dbern(p[i])
logit(p[i]) <- (task.A[i] - choiceNum.A*thresh.A[sid[i]]) *

pow(tau.A[sid[i]],.5)
}
# individual choices in B:
for (i in 1:length(y.B)) {

y.B[i] ~ dnorm(inprod(X.B[i,],beta) + nu1[gid.B[i]] + nu2[sid.B[i]],tau[3])
## nu1, nu2 are the two random effects

X.B[i,latentA] <- choiceNum.A*thresh.A[sid.B[i]] # estimate for latent var.
}
# subject specific:
for (s in 1:max(sid)) {
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thresh.A[s] ~ dbeta(a.A,b.A) # switching point for A
tau.A[s] ~ dgamma(s.A,r.A) # precision switching point
nu2[s] ~ dnorm (0,tau[2]) # random effect subject for B

}
# group specific
for (g in 1:max(gid.B)) {

nu1[g] ~ dnorm (0,tau[1]) # random effect group for B
}
# parameters for switching point:
a.A ~ dgamma(2,1/2) # switching point
b.A ~ dgamma(2,1/2) # switching point
s.A <- (m.A*m.A)/(d.A*d.A) # prec. switching point
r.A <- m.A/(d.A*d.A) # prec. switching point
m.A ~ dgamma(1,1) # prec. switching point
d.A ~ dgamma(10,1) # prec. switching point
##
for (k in 1:3) { ## priors for prec. of residual and random effects:

tau[k] ~ dgamma(mTB[k]*mTB[k]/(dTB[k]*dTB[k]),mTB[k]/(dTB[k]*dTB[k]))
mTB[k] ~ dgamma(1,1)
dTB[k] ~ dgamma(1,1)

}
for (k in 1:K) {

beta[k] ~ dnorm (0,.0001) # prior fixed effect for beta
}

}'

run.jags(model=large.mod,data=lData,monitor=c("beta"),n.chains=4,inits=initJags)

JAGS model summary statistics from 40000 samples (chains = 4; adapt+burnin = 5000):

Lower95 Median Upper95 Mean SD Mode MCerr MC%ofSD SSeff
beta[1] -4.9048 -1.1461 2.4637 -1.1345 1.8672 -- 0.023343 1.3 6398
beta[2] -2.293 -0.82914 0.69036 -0.82166 0.75646 -- 0.0040438 0.5 34994
beta[3] -2.4435 -1.0431 0.33221 -1.0418 0.70468 -- 0.0038875 0.6 32859
beta[4] -1.2578 -0.7344 -0.19558 -0.732 0.26924 -- 0.0036276 1.3 5509

AC.10 psrf
beta[1] 0.091985 1.0001
beta[2] 0.00398 1.0001
beta[3] 0.0095094 1
beta[4] 0.11116 1.0001

Total time taken: 16.6 seconds
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C. Instructions
General Instructions In the following experiment, you can earn a substantial amount of money, de-
pending on your decisions. It is therefore very important that you read these instructions carefully.
During the experiment, any communication whatsoever is forbidden. If you have any questions,

please ask us. Disobeying this rule will lead to exclusion from the experiment and from all payments.
You will in any case receive 4 e for taking part in this experiment. In the first two parts of the experiment,

we do not speak not of e, but instead of Taler. Your entire income from these two parts of the experiment is
hence initially calculated in Taler. The total number of Taler you earn during the experiment is converted into
e at the end and paid to you in cash, at the rate of

1 Taler = 4 Eurocent.
The experiment consists of four parts. We will start by explaining the first part. You will receive separate

instructions for the other parts.

Part One of the Experiment In the first part of the experiment, there are two roles: A and B. Four
participants who have the role A form a group. One participant who has the role B is allocated to each group.
The computer will randomly assign your role to you at the beginning of the experiment.

On the following pages, we will describe to you the exact procedure of this part of the experiment.

Information on the Exact Procedure of the Experiment This part of the experiment has
two steps. In the first step, role A participants make a decision on contributions to a project. In the second step,
the role B participant can reduce the role A participants’ income. At the start, each role A participant receives
20 Taler, which we refer to in the following as the endowment. Role B participants receive 20 points at the start
of step 2. We explain below how role B participants may use these points.

Step 1: In Step 1, only the four role A participants in a group make a decision. Each role A member’s
decision influences the income of all other role A players in the group. The income of player B is not affected
by this decision. As a role A participant, you have to decide how many of the 20 Taler you wish to invest in a
project and how many you wish to keep for yourself.

If you are a role A player, your income consists of two parts:

1. the Taler you have kept for yourself (“income retained from endowment”)
2. the “income from the project”. The income from the project is calculated as follows:

Your income from the project = 0.4 times the total sum of contributions to the project

Your income is therefore calculated as follows:

(20 Taler – your contribution to the project) + 0.4* (total sum of contributions to the project).

The income from the project of all role A groupmembers is calculated according to the same formula, i.e., each
role A group member receives the same income from the project. If, for example, the sum of the contributions
from all role A group members is 60 Taler, then you and all other role A group members receive an income
from the project of 0.4*60 = 24 Taler. If the role A group members have contributed a total of 9 Taler to the
project, then you and all other role A group members receive an income from the project of 0.4*9 = 3.6 Taler.

For every Taler that you keep for yourself, you earn an income of 1 Taler. If instead you contribute a Taler
from your endowment to your group’s project, the sum of the contributions to the project increases by 1 Taler
and your income from the project increases by 0.4*1 = 0.4 Taler. However, this also means that the income of all
other role A group members increases by 0.4 Taler, so that the total group income increases by 0.4*4 = 1.6 Taler.
In other words, the other role A group members also profit from your own contributions to the project. In
turn, you also benefit from the other group members’ contributions to the project. For every Taler that another
group member contributes to the project, you earn 0.4*1 = 0.4 Taler.

Please note that the role B participant cannot contribute to the project and does not earn any income from
the project.
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Step 2: In Step 2, only the role B participant makes decisions. As role B participant, you may reduce or
maintain the income of every participant in Step 2 by distributing points.

At the beginning of Step 2, the four role A participants and the role B participant are told how much each of
the role A participants has contributed to the project.

As a role B player, you now have to decide, for each of the four role A participants, whether you wish to
distribute points to them and, if so, how many points you wish to distribute to them. You are obliged to enter
a figure. If you do not wish to change the income of a particular role A participant, please enter 0. Should you
choose a number greater than zero, you reduce the income of that particular participant. For each point that
you allocate to a participant, the income of this participant is reduced by 3 Taler.

The total Taler income of a role A participant from both steps is hence calculated using the following formula:

Income from Step 1 – 3 * (sum of points received)

Please note that Taler income at the end of Step 2 can also be negative for role A participants. This can be
the case if the income-subtraction from points received is larger than the income from Step 1. However, the
role B participant can distribute a maximum of 20 points to all four role A members of the group. 20 points
are the maximum limit. As a role B participant, you can also distribute fewer points. It is also possible not to
distribute any points at all.

If you have role B, please state your reasons for your decision to distribute (or not to distribute) points, and
why you distributed a particular number of points, if applicable. In doing this, please try to be factual. Please
enter your statement in the corresponding space on your screen. You have 500 characters max. to do this.
Please note that, in order to send your statement, you will have to press “Enter” once each time. As soon as
you have done this, you will no longer be able to change what you have written.

The income of the role B participant does not depend on the income of the other role A participants, nor
on the income from the project. For taking part in the first part of the experiment, he or she receives a fixed
payment of

1 e.

In addition, the role B participant receives the sum of 0.01 e for each point that he or she did not distribute.
Once all participants have made their decisions, your screen will show your income for the period and your
total income so far.

After this, the first part of the experiment ends. You will then be told what your payment is for this part of
the experiment. Hence, you will also know how many points you and all other participants have been given
by player B.

Experiences from an Earlier Experiment For your information, we give you the following
graph, which tells you the average contributions made in a very similar experiment that was conducted in this
laboratory.

In this experiment, too, there were groups of 4 role A participants and one role B participant each. The role
A participants’ income was calculated in exactly the same way. The experiment had 10 equal periods. The role
B participant also had 20 points at his disposal in each period. At the end of each period, the role A participants
were told how much each of the other participants had contributed and how the role B participant had reacted
to this.

27



2 4 6 8 10

0
4

8
12

16
20

past experiment

period

av
er
ag

e
co

nt
rib

ut
io
n

Part Two of the Experiment The second part of the experiment consists of 10 repetitions of the first
part. Throughout the entire second part, all participants keep the role they had in the first part of the experiment.
The computer randomly rematches the groups of four in every period. In each period, the computer randomly
assigns a role B participant to each group.

As a reminder: In each period, each role A participant receives 20 Taler, which may be contributed to the
project entirely, in part, or not at all. For each period, calculating the income from the project for the role A
participants in a group happens in exactly the same way as it did in the first part of the experiment. In each
period, each role B participant receives 20 points, which may be used to reduce the income of the players A in
the group. For each point that a role A participant receives in a period, 3 Taler are subtracted. For each point
that a role B participant does not use, he or she is given the sum of 0.01 e. In addition to the income from the
points retained, each role B participant receives a flat fee of 10 e for participating in this second part of the
experiment.

At the beginning of Step 2 of each period, the four role A participants and the role B participant are told how
much each of the role A participants contributed to the project.

Please note that the groups are rematched anew in each period.
After each period, you are told about your individual payoff. You are therefore also informed how many

points you and the other participants have been assigned by the role B participant.

Part Three of the Experiment We will now ask you to make some decisions. In order to do this, you
will be randomly paired with another participant. In several distribution decisions, you will be able to allocate
points to this other participant and to yourself by repeatedly choosing between two distributions, ‘A’ and ‘B’.
The points you allocate to yourself will be paid out to you at the end of the experiment at a rate of 500 points
= 1 e. At the same time, you are also randomly assigned to another participant in the experiment, who is, in
turn, also able to allocate points to you by choosing between distributions. This participant is not the same
participant as the one to whom you have been allocating points. The points allocated to you are also credited
to your account. The sum of all points you have allocated to yourself and those allocated to you by the other
participant are paid out to you at the end of the experiment at a rate of 500 points = 1 e. Please note that
the participants assigned to you in this part of the experiment are not the members of your group from the
preceding part of the experiment. You will therefore be dealing with other participants.

The individual decision tasks will look like this:
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Possibility A

Your points:
The points of the par-
ticipant of the experi-
ment allocated to you:

0 500

A

Possibility B

Your points:
The points of the par-
ticipant of the experi-
ment allocated to you:

304 397

B
In this example: If you click ‘A’, you give yourself 0 points and 500 points to the participant allocated to you.

If you click ‘B’, you give yourself 304 points and 397 points to the participant allocated to you.
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