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Abstract

Although many real bargaining situations involve more than one person on each
side of the bargaining table, much of the theoretical and experimental research
concentrates on two single players. We study a simple extension: Bilateral bar-
gaining of four people (two two-person groups) with different patience. One might
think that the outcome should depend only on the most patient members of each
group. The impatient members agree anyway and are, hence, irrelevant. We find,
however, that the less patient player has at least some impact on the outcome. As
an explanation we suggest a decrease in uncertainty about responder behaviour if
a group is clearly asymmetric.
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1. Introduction

Bargaining is prevalent in many areas of social interaction. Labour unions
bargain with employers, political parties bargain with other political parties, fami-
lies negotiate jointly with the seller of their new home, entire governments haggle
with other governments about trade agreements, etc. These bargaining situations
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are non-trivial for two reasons: First, we know that already in very simple bar-
gaining situations like the ultimatum game (Güth et al., 1982) but also in richer
bargaining situations (Güth and Tietz, 1988) behaviour differs markedly from the
game theoretic solution and behavioural motives matter a lot. Second, much of
the bargaining literature models bargaining parties as individuals (see Osborne and
Rubinstein, 1990, for a theoretical and Roth, 1995, for an experimental overview),
although much of the real bargaining is done by groups. We know that groups
can behave more competitively than individuals (see Wildschut et al., 2003, and
Wildschut and Insko, 2007, for an overview of evidence on the inter-individual
– inter-group discontinuity effect). Thompson et al. (1996) argue that groups are
more successful than solo negotiators. Chae and Moulin (2010) show axiomat-
ically that group bargaining leads to different outcomes than individual bargain-
ing. Evidence from individual bargainers can, thus, not easily be generalised to
bargaining groups. Still, there are only few bargaining experiments where at least
one bargaining party consists of more than one person.

Some of these studies are not essentially interested in groups but, rather prag-
matically, use groups as a device to elicit spontaneous conversations which re-
veal motives and processes of bargaining individuals. Hennig-Schmidt et al.
(2002) and Hennig-Schmidt and Li (2005) compare alternating offers bargain-
ing of 3-person-teams in Germany to 3-person-teams bargaining in China. Geng
and Hennig-Schmidt (2007) analyse communication and quasi-communication in
3-person-groups in ultimatum games. Hennig-Schmidt et al. (2008) analyse non-
monotonic strategies of 3-person-groups in ultimatum games. These studies use
homogeneous groups.

More related to our experiment is Messick et al. (1997) who study how indi-
viduals perceive processes within an opponent group. In their bargaining experi-
ments groups have to use different decision rules. Messick et al. find that the solo
counterparts of these groups do not anticipate the impact of the decision rules.
As in Messick et al., we want to study how the bargaining position of a group
is perceived by the group’s opponents. In contrast to Messick et al. we keep the
decision rule in groups constant and focus on the heterogeneity within groups.

While Messick et al. manipulate the processes within a group, Bornstein and
Yaniv (1998) compare the behaviour of individuals with 3-person-groups in the
ultimatum game. They observe that proposer groups make higher demands than
individuals while acceptance rates are equal among groups and individuals and
conclude that, hence, groups are more rational players than individuals.

Both experiments illustrate two major differences between individual and
inter-group bargaining: Groups consist of several players with potentially het-
erogeneous interests and different power to influence the outcome. Furthermore,
groups have identities which may be different from individual identities. In our
experiment we will address these issues. We change the number of players who
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are just members of the group, the number of players who can affect the outcome
and the heterogeneity of their preferences.

To simplify matters we exclude face-to-face interaction as well as within and
between group discussions. Technically we extend Rubinstein’s alternating offers
bargaining game (see Rubinstein, 1982, 1985) to the simplest possible group case,
namely to two two-person-groups.1

2. The bargaining game

2.1. Selfish individuals
In a Rubinstein bargaining game with complete information (see Rubinstein,

1982), two players divide a pie of size one. Players alternate in making offers
how to divide the pie. If the responder accepts, the offer is implemented and the
game ends. In each round without agreement, payoffs are discounted by individual
factors di ∈ (0, 1) for the two players i ∈ {1, 2}. In the subgame perfect equilibrium
of this game, player 1 offers in the first round (1 − d2)/(1 − d1d2) for herself and
1 − (1 − d2)/(1 − d1d2) for player 2. This offer will immediately be accepted by
player 2.

2.2. Selfish groups
Demidova and La Mura (2010) extend this situation to three players: player 1,

player 2A and player 2B with individual discount factors di (i ∈ {1, 2A, 2B}). Play-
ers 2A and 2B form a couple (or a two-person group).2 Players have to split a pie
of size one between player 1 and the couple. The members of the couple enjoy
their share of the pie as a public good. As in the Rubinstein game parties alternate
in making offers. Once a party accepts, the offer is implemented and the game
ends. The couple decides unanimously. Offers are accepted only if both mem-
bers accept. When both members of a couple make an offer, only the offer that is
better for the couple counts. It is easy to show that the equilibrium of this game
is equivalent to the equilibrium of a game where player 1 bargains with the more
patient member of the couple. If, e.g. player 2A is less patient than player 2B
(d2A < d2B), then in the subgame-perfect equilibrium player 1 will receive a share
of (1−d2B)/(1−d1d2B) and the couple will receive a share of 1−(1−d2B)/(1−d1d2B).
The preferences of the impatient player 2A do not matter at all.3

1Demidova and La Mura (2010) analyse a situation where all group members are involved in
each decision. Perry and Samuelson (1994), for instance, take another theoretical approach. They
analyse a situation with two bargaining parties, one representing a (possibly large) constituency.

2Since using the word “group” for only two people might be problematic (see Harris et al.,
2009), we will use the terms “two-person-group” or “couple” in the following.

3Demidova and La Mura (2010) extend these two situations to scenarios under one-sided in-
complete information about time preferences which we will not consider in this paper.
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2.3. Groups with social preferences
We consider a variant of Demidova and La Mura (2010) with four players.

Players 1A and 1B make the first proposal (only player 1A takes decisions, player
1B is passive and obtains the same payoff as player 1A), players 2A and 2B are the
responders in the first round. We introduce player 1B to avoid efficiency concerns
that would arise with an unequal number of players on the two sides. Since players
need not necessarily be selfish, let us assume that similar to Charness and Rabin
(2002) or Fehr and Schmidt (1999) player i maximises xi −

α
3

∑
j∈{1,2,3,4}max(x j −

xi, 0) − β

3

∑
j∈{1,2,3,4}max(xi − x j, 0).4 As in the selfish case we solve the game

by backward induction (see Binmore, 1987). Different from the selfish case we
can not exploit that all rounds are essentially symmetric. Since the pie shrinks
over time, a division which is unacceptably unequal at time t becomes more equal
and more acceptable at t + 2 since the pie is smaller at t + 2 and, as a result,
inequity is reduced. We can only calculate a numerical solution.5 First round
equilibrium shares for player 1 as a function of α and β for the discount factors we
use in our experiment are shown in Figure 1. The left part of the figure show the
homogeneous situation where both members of the second couple have the same
discount factor d2A = d2B = 0.8. The middle part of the figure shows the case
where the second couple is heterogeneous, d2A = 0.8 and d2B = 0.95. In this case
for values of α > 0 and, in particular, small values of β equilibrium outcomes are
not monotonic in α. The reason is that for later stages of the bargaining process
inequity becomes large and the second couple prefers to wait to reduce inequity.
In this situation agreements can be reached only during a finite number of initial
bargaining rounds while the pie is still large and inequity is still low. The right
part of the figure shows the homogeneous situation where both members of the
second couple have the same discount factor d2A = d2B = 0.95, i.e. they are more
patient than the first couple.

As to be expected positive values of α and β lead to more egalitarian outcomes
(the most egalitarian possible is 1

2 : 1
2 in the top right corner of each graph) while

negative values of α and β imply outcomes where the stronger, i.e. more patient,
player obtains almost the entire pie (player 1 in the left and the couple 2A and 2B
in the middle and the right graph). We will come back to Figure 1 in the discussion
of our experimental results.

4Since in the experiment participants bargain over lottery tickets, social preferences are not
about outcomes but rather about procedures (see, e.g. Bolton et al., 2005; Sebald, 2010).

5We solve the game by backward induction for 160801 different combinations of α and β
(which is in each case identical for all players), always starting from a different and random divi-
sion in round 250. As we can see from the sharp contours in Figure 1 (or sometimes the regular
sawtooth pattern in the middle graph) and similar to the analysis in the selfish case the randomness
in round 250 does not visibly affect the result.
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Figure 1: Equilibrium shares and social preferences
We assume that player i maximises xi −

α
3
∑

j∈{1,2,3,4}max(x j − xi, 0) − β
3
∑

j∈{1,2,3,4}max(xi − x j, 0)
and that α and β are the same for all players. Contour lines show first round equilibrium shares
for player 1 with d1 = 0.9. We use a numerical approximation that starts the backward induction
in round 250. The sawtooth pattern in the contour lines of the graph in the middle is due to
the different lengths of the (discrete) number of rounds during which agreements are possible.
Contour lines are equidistant, except that we added contours at 0.52 and 0.53 to give more detailed
information about the rather flat region in the top right part of the graphs.

3. Experiment

When we move from two-person bargaining to bargaining of heterogeneous
two-person groups we change several parameters. In the experiment we will study
these changes separately and compare five treatments (see Table 1).

To control for concerns for efficiency we have always the same number of
players on both sides: In the 2playerSingle treatment one player bargains with one
other player. In the remaining treatments two players on one side bargain with two
other players. Among the 1A and 1B players only the 1A player makes decisions.
Player 1B obtains the same payoff as 1A but takes no decisions. The purpose
of this passive player is to make sure that all divisions are equally efficient and
only distributional concerns matter. Treatments are called 2playerSingle, 2player,
3playerSym, 3playerAsym and 3playerPatient. The numbers in the names refer
to the number of active players in each treatment. Sym and Asym refer to the
(a)symmetry of bargaining power within the couple consisting of player 2A and
player 2B.

2playerSingle In the baseline treatment, two individuals bargain with each other.
Player 1 has a discount factor of d1 = 0.9, player 2 of d2 = 0.8.
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Table 1: The five treatments

Treatment
Discount factors

of players. . . Equilibrium shares [%]

1A 1B 2A 2B odd rounds even rounds
2playerSingle 0.9 - 0.8 - (71.4,28.6) (64.3,35.7)
2player 0.9 0.9 0.8 0.8 (71.4,28.6) (64.3,35.7)
3playerSym 0.9 0.9 0.8 0.8 (71.4,28.6) (64.3,35.7)
3playerAsym 0.9 0.9 0.8 0.95 (34.5,65.5) (31.0,69.0)
3playerPatient 0.9 0.9 0.95 0.95 (34.5,65.5) (31.0,69.0)

Note: In all treatments players would under the subgame-perfect equilibrium agree in round 1.
In the experiment, we call the player 1s “red” and the player 2s “blue” to avoid that participants
perceive an order of players according to the numbers 1 and 2. Bold type is used for active, normal
type for passive players.

2player In the second treatment, we add one passive player on each side:
player 1B and player 2B. Player 1A and player 2A can make offers and
accept or reject, the B-players are passive and receive the same payment
as their partners. Both player 1s have a discount factor of d1 = 0.9, both
player 2s of d2 = 0.8.

3playerSym In the third treatment, player 2B is an active player, too. When
player 1A makes an offer, both player 2A and player 2B have to accept it
for the game to end. If at least one of them rejects the offer, both make in-
dependent counter-offers. Player 1A learns both offers, but can only accept
or reject the offer that is lower for herself. In this treatment, player 2A and
player 2B have the same discount factor d2 = 0.8.

3playerAsym In the fourth treatment, the only thing we change compared to
3playerSym is player 2B’s discount factor which is now d2B = 0.95.

3playerPatient Also the fifth treatment is very similar to 3playerSym, except that
both player 2’s discount factors are dAB = d2B = 0.95.

In the first three treatments, 2playerSingle, 2player, and 3playerSym, the selfish
equilibrium is always the same: player 1 obtains 71.4% of the pie. In the 3play-
erAsym and 3playerPatient at least one of players 2A and 2B has a high discount
factor and, thus, a strong bargaining position. Player 1 should only get 34.5%.
Hence, we hypothesise the following:

First round demands are lower in the 3playerAsym and the 3player-
Patient treatment than in the other treatments. There is no difference
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between 3playerAsym and 3playerPatient.

Between November 2009 and October 2013, we conducted 18 experimental ses-
sions at the economics laboratory at the University of Jena, Germany. We always
conducted two treatments per session: To introduce the game, the first treatment
was always 2playerSingle. The second treatment was then either 2player, 3player-
Sym, 3playerAsym or 3playerPatient. 16 people participated per session, adding
up to a total of 288 subjects. Appendix A provides an overview. To control for risk
preferences we use the binary lottery technique to pay participants (see Roth and
Malouf, 1979). Participants were invited with ORSEE (Greiner, 2004). The ex-
periment was programmed and conducted with z-Tree 3.3.6 (Fischbacher, 2007).
Figure D.6 in the appendix shows an example screenshot. The average earning
was 10.80e . The data was prepared and analysed with R 3.0.2 (R Core Team,
2013).

4. Results

In this section, we will discuss first round demands, acceptance thresholds,
and the number of rounds needed to reach an agreement. Appendix A gives an
overview of the number of sessions and participants for the different treatments.
Since most negotiations (58.3%) conclude during the first round we will concen-
trate on behaviour in the first round. Divisions are always given as shares of
player 1 unless stated otherwise.

4.1. Descriptives
Figure 2 shows how first round demands develop during the experiment and

for the different treatments. All sessions started with five periods of 2playerSin-
gle. Thereafter, participants played one of the 2player, 3playerSym, 3playerAsym
and 3playerPatient treatments. In our analysis we can not (and do not want to) dis-
tinguish whether differences between 2playerSingle and the other four treatments
are actual treatment effects or due to learning during the experiment.

If participants follow the (selfish) equilibrium we should expect for all treat-
ments, except 3playerAsym and 3playerPatient, a first round demand of 71.4%.
Only in 3playerAsym and in 3playerPatient the demand should be as low as
34.5%. Indeed, the average demand in 3playerAsym is smaller than the demand
in 2player and in 3playerSym. The only difference between 3playerAsym and
3playerPatient is one impatient player 2 which should, theoretically, not matter
since this player would always be overruled by the patient player 2. We see, how-
ever, that first round demands in 3playerAsym are higher than in 3playerPatient
(where both player 2s are patient).
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Figure 2: First round average demands
The experiment always started with five periods of 2playerSingle, followed by five periods of one
of the other four treatments.

4.2. First round demands
To compare the first round demands more precisely we estimate the following

mixed effects model for each treatment t separately:6

firstRoundDemandt = β0 + εk + εi + εiτ (1)

We include random effects for the session εk and for the individual εi, and the stan-
dard residual εiτ. Detailed results are shown in Appendix C.1. HPD7 confidence
intervals for the coefficients are shown in Figure 3.

Differences in first round demands are given in Table 2. Moving from 2player
to 3playerSym gives the player 2B, who was idle in 2player, the power to reject
proposals and to make own proposals. This increases the share for players 2A and
2B by a small (1.13), but insignificant, amount. Although the difference between
first round demands in the 3playerSym and in the 3playerPatient case is with only
3.44 much smaller than the difference we should expect in equilibrium (36.95),
the decrease in demands is significant. In the 3playerAsym treatment, where we

6Since the distribution of demands is highly skewed, different treatments (with different mean
offers) have different distributions for the random effects. This is why we have to estimate each
treatment separately.

7HPD intervals are (frequentist) highest posterior density intervals for the estimated values
based on a bootstrap with 10000 replications. For the bootstrap and for the estimation we use the
lme4 (Version: 0.999999-2) package from R version 3.0.2 (2013-09-25).

8See footnote 7.
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Figure 3: First round demands (Equation 1)
95% HPD8confidence intervals for β0 from Equation (1). Vertical lines indicate the equilibrium
shares (dashed 34.5% for 3playerAsym and 3playerPatient, and solid 71.4% for all other treat-
ments).

mean 95% -conf.int. p-value
2player-3playerSym 1.13 -4.16 6.48 0.3103

3playerSym-3playerPatient 3.44 -0.04 7.10 0.0262
3playerAsym-3playerPatient 1.31 -0.50 3.16 0.0620

3playerSym-3playerAsym 2.14 -1.56 5.83 0.1120

Table 2: Difference in first round demands (Equation 1)
p-values are based on a bootstrap with 10000 replications and refer to a Null-hypothesis of no
difference between the treatments and an alternative of a positive difference (as theoretically pre-
dicted for the comparison of 3playerSym with 3playerPatient and 3playerAsym).

should find the same demand as in 3playerPatient, players 2A and 2B obtain 1.31
units less than on the 3playerPatient treatment. This difference is, however, only
weakly significant.

The behaviour in the symmetric treatments is consistent with a moderate
amount of inequity aversion while the asymmetric treatment would require a re-
markably large degree of inequity aversion. Comparing our results with Figure 1,
we see that the average demand we find in 3playerSym (55.4) is in line with values
of, e.g., α = β ≈ 0.196. Also the average demand for 3playerPatient (51.96) can
be rationalised with, e.g., α = β ≈ 0.216. The average demand in the asymmetric
treatment 3playerAsym (53.27), however, would require values of α and β both
larger than 0.4.

4.3. Accepting offers in the first round
In the preceding section we have seen that demands by player 1 react to the

presence of one more patient player (third line of Table 2). We have also seen that
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Figure 4: First round response (Equation 2)
95% HPD confidence intervals for −βt/βo (top graph) and differences in −βt/βo (bottom graph)
from Equation (2). Vertical lines indicate the equilibrium shares (dashed 34.5% for 3playerAsym
and 3playerPatient, and solid 71.4% for all other treatments) in the top graph and the theoretically
expected difference of 36.9 in the bottom graph.

this reaction is smaller than predicted and also smaller than the reaction to a ho-
mogeneous change in patience of the player 2s (second line of Table 2). Can this
behaviour of player 1 be explained as the anticipation of acceptances and rejec-
tions by player 2A and 2B? To better understand this, we estimate the following
mixed effects logistic model.

P(firstRoundAccept) = L

βo · o +
∑

t∈Type

βt · dt + εk + εi

 (2)

Here L is the logistic function, o is the offer made by player 1, dt is a dummy for
the treatment and the type of the player in the 3playerAsym case (strong for the
2B player with d2B = 0.95 and weak for the 2A player with d2A = 0.8), εk and εi

are random effects for the session and the individual, respectively. In Figure 4 we
show confidence intervals for −βt/βo, i.e. for the threshold where the probability
to accept is just 1/2.9 As above we should expect that this threshold is 71.4 for

9Solving 1/2 = L(βo · o + βt) for o yields o = −βt/βo.
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all treatments and players except for 3playerPatient and for the strong player 2 in
3playerAsym, where the threshold should be 34.5. Indeed, these two seem to have
a lower threshold than their counterparts. The lower graph in Figure 4 shows the
difference between 3playerSym and 3playerPatient and the difference between the
weak and the strong player in the heterogeneous group. Both differences should
have the same value of 36.9. We see that both differences are, indeed, positive (and
significantly so). The confidence interval (1)-(2) shows the difference between the
homogeneous and the heterogeneous effect. Here we find no significant difference
(the confidence interval includes the zero).

We can summarise that in heterogeneous as well as in homogeneous groups
discount factors matter significantly, although much less than they should in the
selfish equilibrium. The impact seems to be the same in heterogeneous and in
homogeneous groups. Regardless whether we make both player 2A and 2B more
patient (as in the comparison of 3playerSym and 3playerPatient) or whether we
compare one patient player 2B with an impatient 2A (as in 3playerAsym), the
magnitude of the effect is almost the same. It is, hence, surprising, that decisions
of player 1 seem actually to make a difference between these two. We will offer
one explanation in the next section.

4.4. Noisy acceptance thresholds as a reason for first round demands
In the previous section we saw a lot of heterogeneity in the individual accep-

tance thresholds. It is easy to see that this heterogeneity can rationalise the differ-
ence in demands between 3playerAsym and 3playerPatient we observed above.
Let us assume that acceptance decisions by player 2A and player 2B can be de-
scribed by an individual treshold x2 which is unknown to player 1. Player 1 only
knows a distribution x2 ∼ F(x2). If player 1 demands less than x2, the demand
is accepted by the respective player 2. If player 1 demands more than x2, the de-
mand is rejected. If players 2A and 2B are symmetric and independent (as it is
the case in 3playerPatient or 3playerSym), then the probability of a proposal x to
be accepted is F(x)2, hence the expected payoff of player 1, who demands x, is
x · F(x)2 + xc · (1 − F(x)2), where xc is the payoff player 1 expects to obtain if the
game continues in the second round.

If player 2A is less patient than 2B (as in 3playerAsym), she is likely to ac-
cept proposals which are not acceptable for 2B. Let us assume for simplicity that,
whenever 2B accepts, 2A accepts as well. In such a situation the expected payoff

of player 1 is x · F(x) + xc · (1 − F(x)).
It is easy to see that any increase in the variance of F leads to an increase in the

difference between the demands in 3playerAsym and 3playerPatient. If we assume
for illustration that F(x) is a uniform distribution with F(x) = min(1,max(0, 1/2+

(x̄2 − x)/∆2)) where x̄2 is the demand which just 1/2 of all player 2s would accept
and ∆2 is a measure for player 1’s uncertainty about player 2’s actual threshold
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Figure 5: Number of rounds to reach an agreement (Equation 3)

x2, such that σF = ∆2/(2
√

3), then (as long as x̄2 − ∆2 ≤ xc ≤ x̄2 + ∆2/2) the
difference between the proposals that maximise the expected payoff of player 1 in
the asymmetric situation and in the symmetric situation is (x̄2−xc)/6+∆2/12. Here
an increase in the standard deviation σF of player 2’s acceptance threshold by one
unit translates into a difference in offers between 3playerAsym and 3playerPatient
of 1/(2

√
3) ≈ 0.29. If the distribution is not, as assumed above, uniform but

normal, this number becomes approximately 0.4. The difference of 1.31% that
we have found above between offers in 3playersAsym and 3playerPatient could,
hence, be rationalised as a rather small uncertainty about player 2’s acceptance
threshold.

4.5. Number of rounds to reach an agreement
To assess the number of rounds players need to reach agreements, we estimate

a mixed effects Poisson model:

numberOfRounds ∼ Poisson(λ =
∑

t∈Treatm.

βt · dt + εk + εi) (3)

Here, n is the number of rounds needed to reach an agreement or until participants
are stopped10 for each treatment. As above, dt is a dummy for the treatment, εk

and εi are random effects for the session and the individual, respectively. Detailed
results are shown in Appendix C.3. Confidence intervals for the coefficients are
shown in Figure 5. We see that participants need, on average, approximately the
same number of rounds in 2playerSingle, 2player and 3playerSym, and fewest
rounds in 3playerAsym.

10In the estimation we also include decisions of participants who were stopped in the bargaining
process because they took more than the allowed time or number of rounds to reach an agreement.
Depending on the treatment this affects between 3.33% and 7.41%. In cases in which participants
were stopped we add one round to the round in which they were stopped as these participants
could have agreed one round after they were stopped at the earliest.
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5. Discussion and conclusion

In this paper we study two two-person-group bilateral bargaining. Unlike Mes-
sick et al. (1997), who focus on the interaction of one individual against a homoge-
neous group, we study the impact of three factors on bargaining behaviour: (1) the
number of payoff-dependent, passive people, (2) the number of active people and
(3) heterogeneous power among players who belong to one small group.

Several of the factors which, according to the game theoretic equilibrium,
should have no effect, such as the number of payoff-dependent, passive people
and the number of active people, had, indeed, no significant effect.

The changes in patience did have a smaller effect than what we should expect
in equilibrium. This is not entirely unexpected. We know from experiments with
single decision makers that players do not react too much to changes in discount
factors (see, e.g., Ochs and Roth, 1989, for a discussion). In terms of Figure 1
inequity averse players will tend to settle on divisions which are closer to 50:50
which is what we observe in all treatments of our experiment. Indeed, for the
symmetric treatments in our experiment, moderate amounts of inequity aversion
seem to be consistent with the demands we observed. However, social preferences
are a less convincing explanation in the asymmetric treatment where demands can
only be rationalised by a surprisingly large degree of inequity aversion.

In section 4.2 we saw that heterogeneity within a group can play a role when,
according to equilibrium predictions, it should not. Although only the most pa-
tient member of a group should determine the strength of the team and although
an increase in the number of these patient players should not matter we see at
least a small effect. Therefore, taking on board weak partners in a bargaining situ-
ation may actually weaken the own bargaining position. The responder behaviour
that we studied in section 4.3 does not really offer an explanation. We did not
see that strong responders are “loyal” towards weak responders. In section 4.5
we could also rule out that proposers should fear a lengthy struggle to reach an
agreement. On the contrary, in heterogeneous groups the number of rounds to
reach an agreement is exceptionally low. In section 4.4 we could, however, ex-
plain how two strong responders can achieve more than a single strong responder
— at least, when there is some uncertainty about responder behaviour. And, as we
saw in section 4.3, this uncertainty clearly exists. The major driving force for our
results would then be uncertainty, perhaps motivated as uncertainty about social
preferences, but not loyalty per se.
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Appendix A. Number of sessions and participants

The following table shows the number of sessions and participants for the different treatments.
In each session, 2playerSingle was followed by one of the other treatments.

2playerSingle 2player 3playerSym 3playerAsym 3playerPatient
sessions 18 3 5 5 5

participants 288 48 80 80 80

Appendix B. Summary statistics

2pl.Single 2pl. 3pl.Sym 3pl.Asym 3pl.Patient
Mean first demand (%) 57.96 56.53 55.40 53.37 51.96
Mean second offer (%) 44.87 44.27 44.82 48.66 45.89

Mean number of rounds 2.10 2.02 2.03 1.67 2.10
Stopped participants (%) 6.38 3.33 6.99 7.41 7.00

Appendix C. Estimation results

Appendix C.1. Equation (1)
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β̂0 σ̂β 95% - conf.int. Pr(> |β̂0|) σ̂i σ̂k

2playerSingle 57.95 0.67 56.61 59.29 0.0000 5.88 1.75
2player 56.53 2.08 52.49 60.75 0.0000 3.77 1.99

3playerSym 55.40 1.75 51.83 58.66 0.0000 5.18 2.10
3playerAsym 53.27 0.79 51.68 54.78 0.0000 3.53 0.00

3playerPatient 51.96 0.47 50.97 52.85 0.0000 1.37 0.00

Appendix C.2. Equation (2)

Estimate Std. Error z value Pr(>|z|)
offer -0.43 0.026 -16.36 0.0000

2playerSingle 25.27 1.520 16.63 0.0000
2player 24.74 1.560 15.85 0.0000

3pAsym.Strong 25.01 1.478 16.92 0.0000
3pAsym.Weak 26.40 1.593 16.57 0.0000
3playerPatient 24.00 1.438 16.70 0.0000

3playerSym 25.38 1.498 16.94 0.0000
Groups Name Variance Std.Dev.
i (Intercept) 3.5 1.87202
k (Intercept) 2.95e-14 1.72e-07

Appendix C.3. Equation (3)

Estimate Std. Error z value Pr(>|z|)
2playerSingle 0.61 0.059 10.47 0.0000

2player 0.61 0.098 6.21 0.0000
3playerSym 0.76 0.082 9.20 0.0000

3playerAsym 0.30 0.083 3.58 0.0003
3playerPatient 0.77 0.082 9.38 0.0000
Groups Name Variance Std.Dev.
i (Intercept) 0.0898 0.3
k (Intercept) 0.0266 0.163
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Appendix D. Experimental procedures

Between November 2009 and October 2013, we conducted 18 experimental sessions at the
economics laboratory at the University of Jena, Germany. 16 people participated per session,
adding up to a total of 288 subjects.11 Participants were invited using ORSEE (Greiner, 2004).
93% of our participants were students from Jena, about 58% were female and 42% male partic-
ipants. The average age was 23 years. As part of the lab policy and to ensure that participants
understood the instructions, only subjects that had passed a short German language test took part
in the experiment. To ensure that participants had approximately the same level of experimental
bargaining practice, only persons without prior experience in bargaining experiments in Jena were
invited. Subjects participated in only one session of the experiment.

An experimental session proceeded as follows. Upon arrival, participants were randomly
assigned to cubicles were they read the instructions. Participants were not allowed to talk to each
other. Questions of participants were answered privately in their cubicle. All sessions of the
experiment were programmed and conducted with z-Tree 3.3.6 (Fischbacher, 2007). Figure D.6
in the appendix shows an example screen. At the beginning of the experiment, participants had to
answer five control questions. After the control questions, the bargaining started.

We conducted two treatments per session. To introduce the game, we always started with
2playerSingle. The second treatment was then either 2player, 3playerSym, 3playerAsym or 3play-
erPatient. Players did not change their roles (1A, 1B, etc.) during the experiment. A player 1 in
the first treatment could only be a player 1A or player 1B in the second treatment. A player 2 in
the first treatment could only be a player 2A or player 2B in the second treatment. Each treatment
was played for five periods. A period consisted of one or more bargaining rounds. At the end of
each period, participants were asked to copy the results of this period into a table so that they had
a record of the experiment’s history.

Participants were randomly rematched after each period. To approximate the infinite horizon
of the game as closely as possible, we did not explicitly limit the number of bargaining rounds.
Similar to Rapoport et al. (1990), we told subjects that they could take their time. However,
if they needed “unexpectedly long”, the computer would interrupt the current period. In fact, the
computer was programmed to interrupt a period if more than 200 seconds (400 seconds in period 1,
300 seconds in period 2) had elapsed or if all other groups had already reached agreement and the
last group was already in round 8 or 9 (The round was drawn as a random number). In case of
such an interruption, the payoff was then calculated as if these players had, after the interruption,
behaved like the average group of players. E.g., if bargaining was interrupted in round 8 and the
average group of players in that session had reached an agreement of 50:50 in round 4, then the
“interrupted” players would get 50:50, too, now discounted by 12 rounds.

We had a small technical problem which, in our opinion, does not compromise the validity
of our results: Participants were assisted by a visual tool when they made their choices. This
tool would allow them study the bargaining situation in an arbitrary round in the future. In some
situations the number of lottery tickets shown by this tool was slightly too small for both play-
ers. Furthermore, in some situations the irrelevant of the player 2’s offers was not transmitted
correctly. Excluding the potentially affected data (7.2%) does not change qualitative results for
the shares. Such an exclusion would, however, complicate the analysis for the number of rounds
tremendously, since these technical problem could only occur after specific choices.

After the five bargaining periods, one period was chosen randomly for payment and a winning
number was drawn to determine the winners of a prize. The experiment ended with a questionnaire

11See Appendix A for on overview.
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in which we asked for demographic data. Each participant was then paid in private and dismissed.
A session lasted on average about one and a half hours. Every participant received a 6e show-up
fee plus a potential prize of 10e . On average, a participant earned 10.80e . during a session.

The following is a translated version of the German instructions for 2playerSingle. The in-
structions for 2player, 3playerSym, 3playerAsym and 3playerPatient appeared on the screen after
2playerSingle was finished. Apart from the number of players and discount factors, respectively,
they are very similar to those for 2playerSingle and are available from the corresponding author
upon request.

Instructions.

Welcome to this experiment!

By participating, you support our research and you can earn money in return. The amount you will
earn depends on your and on the other participants’ decisions. The experiment is financed by the
Friedrich Schiller University Jena. It is important to read the following instructions very carefully
in order to understand how the experiment will proceed. None of the other participants will receive
any information on your decisions or on your payoffs. All data will be treated confidentially and
will be used exclusively for research.

Questions Should you have questions at any point in time, please raise your hand. We will answer
your question privately. Please do not ask your question in a loud voice. If a question is
relevant for all participants, we will repeat it in a loud voice and answer it.

General rules All participants of this experiment have received the same instructions. However,
the information that participants will see on their screens during the experiment is only
intended for the respective participant. Therefore, please do not look at other screens and
do not talk to other participants. Please turn off your mobile phones now. You will be
excluded from the experiment if you break any of these rules. In this case, you will not be
paid.

Procedure and payment The experiment consists of two parts and a concluding questionnaire.
Every part consists of several periods, which in turn can consist of several rounds. You
will learn the respective number during the experiment. In the end, all participants will
receive a show-up fee of 6.00 e, irrespective of the decisions they will have made during
the experiment. In addition, we will raffle several prizes of 10.00 e at the end of the exper-
iment. Your chances to win one of these prizes depend on your and the other participants’
decisions during the experiment and will be explained in the following paragraphs.

Part 1 The first part consists of five periods. There are two roles: Player Red and Player Blue.
First, the computer will determine randomly, who of you will become Player Red and who
will become Player Blue. (You will keep these roles during the whole part 1. This means,
if you are Player Red in the first period, you will stay Player Red in the following periods
and if you are Player Blue in the first period, you will stay Player Blue in the following
periods.) In each period, every two participants play together: one Player Red and one
Player Blue. At the beginning of each period, the computer matches you anonymously
and randomly with another participant. Your task is to divide (initially) 90 lottery tickets
between you and the other participant. The more lottery tickets you own in the end, the
higher your probability to win a prize of 10.00 e.
The first period starts with round 1 and Player Red proposes a proportion how to divide
the lottery tickets between himself and Player Blue, i.e., x % for himself and (100 - x) %
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lottery tickets for Player Blue. (x does not have be integer, also fractions can be divided.)
Player Blue can now accept or reject the proposal. If he accepts, the 90 lottery tickets will
be divided accordingly and the first period will end in round 1.
However, if Player Blue rejects the proposal, round 2 starts. At the beginning of round 2,
the maximum number of available lottery tickets is reduced: by 10% for Player Red, by
20% for Player Blue. Player Blue now makes a counterproposal according to which pro-
portion the remaining lottery tickets should be divided between himself and Player Red.
Subsequently, Player Red can accept or reject this proposal. If he accepts, the lottery tick-
ets are divided accordingly and the first period ends in round 2.

Possible divisions of tickets (rd. 1)

0

90

90

Number of
tickets for
Player Blue

Number of
tickets for
Player Red

Possible divisions of tickets (rd. 2)

0

81

72

Number of
tickets for
Player Blue

Number of
tickets for
Player Red

The diagrams illustrate the possible divisions in round 1 and in round 2. The points on the
thick lines represent all possible divisions. Example: In round 2, Player Red could receive
100% of his maximum number of available lottery tickets (81 tickets), consequently, Player
Blue would receive 0% of his maximum number of available lottery tickets (72 tickets). Or
Player Red could receive 0% of his maximum number of available lottery tickets (81 tick-
ets), consequently, Player Blue would receive 100% of his maximum number of available
lottery tickets (72 tickets). All divisions in between that add up to 100% are also possible.
If Player Red rejects Player Blue’s proposal, round 3 starts and the number of lottery tickets
is reduced like in the previous round: by further 10% for Player Red, by further 20% for
Player Blue. Player Red then makes a counterproposal according to which proportion to
divide the remaining lottery tickets between himself and Player Blue. Subsequently, Player
Blue can accept or reject this proposal like in round 1 and so on. The maximum number of
available lottery tickets is reduced by 10% for Player Red and by 20% for Player Blue at
the beginning of each new round, i.e., every time a proposal is rejected. A period will end
only if a proposal is accepted.
When the first period will have ended, the second period will start. The task will be the
same, namely to divide (initially) 90 lottery tickets between you and the other participant.
We have planned enough time for each period and you can take your time to reach an
agreement with the other participant. However, if you take unexpectedly long to reach an
agreement, the computer will interrupt the current period. In this case, you will receive
from your remaining lottery tickets in that round the proportion that the other participants
received on average. In case all other participants should also not yet have reached an
agreement, the computer will determine a division.

Part 2 You will receive the instructions for part 2 including your player role after part 1 has ended.
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Drawing When all parts of the experiment will have ended, two things will be drawn: the period
relevant for payment and the participants winning a prize of 10.00 e.

1. First, out of all periods one period relevant for payment will be drawn. For this
purpose, a volunteer will draw a table tennis ball out of a container with as many
table tennis balls as there are periods. The number of the drawn ball determines the
payoff relevant period for all participants. The other periods will not be considered
when paying the participants.

2. Subsequently, the participants winning a prize will be drawn. Assume that Player
Red has received x lottery tickets and Player Blue has received y lottery tickets in the
payoff relevant period with x+y ≤ 90. First, each player’s lottery ticket interval is de-
termined. Player Red receives the interval from 0 (inclusive) to x (inclusive), Player
Blue receives the interval from x (exclusive) to x+y (inclusive). (Player Blue’s in-
terval ranges up to 90 maximum since only 90 can be divided.) If two participants
agreed on 3 lottery tickets for Player Red and 4 lottery tickets for Player Blue, Player
Red would receive the interval from 0 (inclusive) to 3 (inclusive). Player Blue’s in-
terval would range from 3 (exclusive) to 7 (inclusive). Afterwards, the winning
number (the same for all participants) is drawn. For this purpose, a volunteer draws
a table tennis ball six times with replacement out of a second container. Ten table
tennis balls numbered from 0 to 9 are in this second container.

The number of the first ball determines the tens digit of the winning number.
The number of the second ball determines the units digit.
The number of the third ball determines the first digit after the decimal point.
The number of the fourth ball determines the second digit after the decimal
point.
The number of the fifth ball determines the third digit after the decimal point.
The number of the sixth ball determines the fourth digit after the decimal point.

For each pair consisting of Player Red and Player Blue it is checked in which interval
the winning number is located. The player whose interval contains the winning
number will receive one of the prizes of 10.00 e, the other will not. In case a
winning number larger than 90 is drawn, a new winning number will be drawn.
In case a winning number smaller or equal 90 is drawn but is is not in the range
of neither Player Red’s nor Player Blue’s interval, no member of this couple will
receive a prize. (This possibility exists since the number of available lottery tickets
is reduced each round.)

Please wait until all participants have finished reading the instructions. We will announce the start
of the experiment.

We wish you success in the experiment!

Part 2 of the instructions. [[ This part would only be displayed after participants had completed
part 1 ]]

The next part consists of five periods, too. The task will be the same for each period.
There are four player roles: Player Red A, Player Red B, Player Blue A and Player Blue

B.
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Period: 6 of 10 Round 2
Player Blue A and player Blue B made the following proposals how to divide the lottery tickets among you and
the blue pair. Only the proposal which gives your pair fewer lottery tickets counts.
Do you accept this proposal or do you reject it?

0
0

10

10

20

20

30

30

40

40

50

50

60

60

70

70

80

80

90

90

Lottery tickets Red

Lottery tickets Blue

In Green the Lines of Player Blue A
In Gold the Lines of Player Blue B

Red Blue A Blue B
max. number
of tickets 81.0000 72.0000 85.0000

proposal (in %
of max. num-
ber of tickets)

30.0000 50.0000 70.0000

proposal (in
tickets) 24.3000 36.0000 59.8500

preview
next round

acceptreject

Figure D.6: Example screen

At the beginning of this part, the computer will split the Players Red from part 1 randomly into
Players Red A and Players Red B. The Players Blue from part 1 will be split randomly into Players
Blue A and Players Blue B. You will keep these roles during this whole part. At the beginning of
each period, the computer matches you anonymously and randomly with three other participants,
such that always one Player Red A, one Player Red B, one Player Blue A and one Player Blue B
are playing together. Player Red A and Player Red B form a couple (the red couple). Player Blue
A and Player Blue B form another couple (the blue couple). Your task is to divide (initially) 90
lottery tickets between your and the other couple. The more lottery tickets you own in the end, the
higher your probability to win a prize of 10.00 EUR.

Players Red A as well as Players Blue A and Players Blue B proceed like Players Red and
Players Blue from part 1. The first period starts with round 1 and Player Red A proposes a propor-
tion how to divide the lottery tickets between the red couple and the blue couple. Player Blue A
and Player Blue B now accept or reject the proposal independently from each other. If Player Blue
A and Player Blue B accept the proposal, the 90 lottery tickets will be divided accordingly
and the first period will end in round 1.

However, if at least one partner from the blue couple rejects the proposal, round 2 starts.
At the beginning of round 2, the maximum number of available lottery tickets is reduced: by 10%
for the red couple, by 20% for Player Blue A and by 5% for Player Blue B. Player Blue A
and Player Blue B now each make a counterproposal independently from each other according
to which proportion the remaining lottery tickets should be divided between themselves and the
red couple. Subsequently, Player Red A can accept out of the two proposals the one which
contains less lottery tickets for the red couple. (Assume that Player Blue A proposes 3 lottery
tickets for the red couple, Player Blue B, however, proposes 2 lottery tickets for the red couple.
Player Red A can then accept Player Blue B’s proposal only.)

If Player Red A accepts, the lottery tickets are divided accordingly and the first period ends
in round 2. If Player Red A rejects, round 3 starts and the number of lottery tickets is reduced
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like in the previous round: by further 10% for the red couple, by further 20% for Player Blue A
and by further 5% for Player Blue B. Player Red A then makes a counterproposal how to divide
the remaining lottery tickets between the blue and the red couple. Like in round 1, Player Blue
A and Player Blue B accept or reject this proposal independently from each other and so on. The
maximum number of available lottery tickets is reduced by 10% for the red couple, by 20%for
Player Blue A and by 5% for Player Blue B at the beginning of each new round, i.e., every time a
proposal is rejected. A period will end only if a proposal is accepted.

Player Red B is not able to make proposals or to react to proposals during this whole
part. Nevertheless, he learns what Player Red proposed to the blue couple and how he reacts
to the blue couples’ proposals.

Player Red A Red B Blue A Blue B
At the beginning of each round, the maximum num-
ber of available lottery tickets to be divided will be
reduced by. . .

10% 10% 20% 5%

Makes and reacts to proposals Yes No Yes Yes

Drawing If the period relevant for payment should be a period from this part, the winners
of the pizes of 10.00 EUR will be drawn like in part 1. Assume that the red couple receives the
interval from 0 (inclusive) to x (inclusive). Player Blue A receives the interval from x (exclusive)
to x+y (inclusive). Player Blue B receives the interval from x (exclusive) to x+z (inclusive). If the
winning number is located within the red couple’s interval, Player Red A as well as Player
Red B will each receive one of the 10.00 EUR prizes. If the winning number is located within
Player Blue A’s and Player Blue B’s interval, Player Blue A as well as Player Blue B will each
receive one of the 10.00 EUR prizes. If the winning number is located within Player Blue B’s
interval, but not within the range of Player Blue A’s interval, only Player Blue B will receive
one of the 10.00 EUR prizes. In case a winning number smaller or equal 90 is drawn but is not
within the range of any player’s interval, no-one will receive a prize. (This possibility exists since
the number of available lottery tickets is reduced each round.)
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