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D-53113 Bonn, Lennéstraße 37
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Abstract

The paper applies the idea of evolution to a spatial model. We assume that prisoners’
dilemmas or coordination games are played repeatedly within neighborhoods where
players do not optimize but instead copy successful strategies.

Discriminative behavior of players is introduced representing strategies as small
automata, identical for a player but possibly in different states against different
neighbors. Extensive simulations show that cooperation persists even in a stochastic
environment that players do not always coordinate on risk dominant equilibria in
2× 2 coordination games and that success among surviving strategies may differ.

We also present two analytical models that explain some of these phenomena.

Keywords: Evolutionary Game Theory, Networks, Prisoners’ Dilemma, Coordina-
tion Games, Overlapping Generations. JEL-Code: C63, C73, D62, D83, R12, R13.
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1 Introduction

In this paper we will discuss a model which uses an evolutionary approach within
a spatial model. We will concentrate on simple strategic situations: prisoners’ di-
lemmas and coordination games. For these games we want to study conditions that
lead to cooperation and coordination. Can players sustain cooperation in prisoners’
dilemmas? Does the introduction of repeated game strategies affect the amount of
cooperation in prisoners’ dilemmas? Will all strategies that survive in equilibrium
achieve equal payoffs? How do players coordinate in coordination games?

To give an example for a spatial prisoners’ dilemma, consider a world with several
firms located in space and competing for customers which are located among these
firms. Firms could set high prices, hoping for a monopoly profit if neighboring firms
set high prices as well. Firms could also set low prices hoping to undercut prices of
other firms and, thus, stimulating demand for their product.1

In a world with global interaction the above story would be a trivial example
of Bertrand competition. This is a standard example where we expect firms to
set low prices in the long run. In a (local) world where firms do not all share the
same market but where instead any two firms have a different set of customers
in common, firms’ behavior might change. Since Hotelling (1929) a lot of spatial
models have been specified and solved. Nevertheless spatial models which assume
that players’ rationality is limited have been neglected for a long time. Sakoda (1971)
and Schelling (1971) were possibly among the first to present results of simulations
of spatial evolution, later followed by Axelrod (1984, p. 158ff), May and Nowak
(1992, 1993), Bonnhoeffer, May and Nowak (1994) and Lindgren and Nordahl (1994).
All of them have studied models where a population is represented as a cellular
automaton. Players are represented as single cells which are in interaction with
neighboring cells and which are learning from neighboring cells. Ellison (1993)
and Eshel, Samuelson and Shaked (1996) have analytically derived properties of
particular cellular automata.

Some of the above (Sakoda (1971), Schelling (1971) and Ellison (1993)) assume
that players optimize myopically. Others (Axelrod (1984, p. 158ff), May and Nowak
(1992, 1993), Bonnhoeffer, May and Nowak (1994), Lindgren and Nordahl (1994)
and Eshel, Samuelson and Shaked (1996)) assume that players learn through imit-
ation of successful strategies. We will follow the latter approach.

Common assumptions of the literature that studies local evolution are synchron-
ous interaction and learning (Axelrod (1984), May and Nowak (1992, 1993), Lind-
gren and Nordahl (1994), Eshel, Samuelson and Shaked (1996)) and players which
are restricted to use stage game strategies only (May and Nowak (1992, 1993), Eshel,
Samuelson and Shaked (1996)). In the current paper we will relax these assump-
tions. A common property of standard evolutionary models, the fact that all surviv-
ing strategies achieve equal payoffs in the long run, may vanish in our framework.
We try to investigate this phenomenon more deeply. We present simulation results

1An example for a spatial coordination game can be found similarly: Neighboring firms could
be interested in finding common standards, meeting in the same market etc.
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and try to give a motivation with simpler models which can be solved analytically.
In contrast to all of the above, except Ellison (1993) and Bonnhoeffer, May and

Nowak (1994) we will model a population where players’ behavior is not synchronized
through an external clock.2

In contrast to all of the above, except Axelrod (1984, p. 158ff) and Lindgren
and Nordahl (1994) we will model players who are able to distinguish between their
neighbors.

We find regions of prisoners’ dilemmas where evolution leads to cooperation.
We consider a simpler evolutionary dynamics which captures features of our sim-
ulation model, which approximates its properties, but which can be studied using
simple analysis. This model also gives an accurate description of the conditions
that lead either to the selectioction of risk dominant or Pareto dominant equilibria
in coordination games.

In our simulations we find that local evolution can lead to the coexistence of
strategies which achieve different payoffs. We are tempted to describe this phe-
nomenon as ‘exploitation’. We give an example of a simpler evolutionary dynamics
which allows us to study this effect analytically.

Various meanings of ‘evolution’: Recently evolutionary models have become
popular among game theorists and economists. Economists use the expression
‘evolution’ to describe any kind of dynamic process. ‘Evolutionary economics’ in
a Schumperterian (Schumpeter 1934) tradition analyzes the dynamics of a process
where individuals find continuously new knowledge, often in the form of new tech-
nologies. The process how a new technology is found is often defined as being
exogenous to the model and not specified in detail. Evolutionary economics con-
centrates more on the effects newly developed technologies have on the evolution of
growth of other technologies and of the economy as a whole.3

‘Evolutionary game theory’ does not explain the complex process of how new
technologies are invented either. Still models in evolutionary game theory are some-
times simple enough such that it is possible to specify precise assumptions on the
behavior of individuals. Assumptions on individuals’ rationality in this context are
often different. Popular restrictions are e.g. the assumption of myopia — individuals
optimize under the (wrong) assumption that they are the only ones who will change
their behavior — limited access to information which may further be unreliable and
furthermore inertia that gives individuals only very rarely the opportunity to update
their strategy.

Other models in evolutionary game theory (which are often inspired by biology)
exclude optimizing behavior, in the sense that individuals try to evaluate fictitious

2With ‘synchronization’ we mean that it is predetermined whether in any given interval certain
interactions or learning events take place. The most common specification is then that during each
period all possible interactions and learning events take place. We call an event (like interaction
or learning) not synchronized if e.g. for each possible interaction a random draw decides whether
the interaction takes place.

3See Richard Nelson (1995) for an exhaustive overview over recent developments in evolutionary
economics.

2



situations, altogether. Successful strategies will grow as long as they are successful,
unsuccessful strategies will vanish from the population.4 The underlying story might
(in biological models) model a birth process where users of successful strategies
produce more offspring and a death process where users of unsuccessful strategies are
more likely to die soon. In social contexts common assumptions are that successful
strategies are more likely to be copied by other members of a society while users of
unsuccessful strategies are likely to abandon their strategy.

The evolutionary model that we will present in the current paper will be of the
latter kind: Players follow a specific rule that imitates a successful strategy among
several strategies whose ‘success’ can at least partially be observed by the player.

The meaning of ‘space’: Spatial models are also common among economists. If
several individuals form together a population, each member may interact with the
other members of the population in a different way. Instead of allowing any pos-
sible structure of different relationships among individuals it is convenient and often
realistic to assume that interactions of the members of a society can be explained
in certain dimensions.

Firms which are located in space could be in competition for customers which
are located between these firms. Thus, each firm influences only nearby competitors
and is not in interaction with other firms which are far away. Furthermore space
need not be geographic space, also qualities of a product can explain differentiated
interaction. Producers of small cars might interact with other producers of small and
medium sized cars but will possibly not be in interaction with completely different
producers.

In the current paper we study a model where a population is represented as a
cellular automaton. In the following we summarize some of the literature on spatial
evolution which is based on cellular automata.

All players are connected through a chain of neighborhoods but these connections
can be very diverse. This contrasts with the model that we present in Kirchkamp
(1995) where two players are either members of the same pair or only connected
through the (homogeneous) learning process. The disadvantage of the cellular auto-
maton model is that due to the diversity of connections among players this structure
is substantially harder to analyze. Therefore cellular automata are often analyzed
using simulations.

Related literature on spatial evolution: In the recent literature cellular auto-
mata are used frequently to model population behavior. Naturally there is more
than one way to model population behavior with a cellular automaton. Some au-
thors (e.g. Sakoda (1971) and Schelling (1971)) take players’ states as fixed and
introduce dynamics of the cellular automaton through movements of players. Oth-
ers (Axelrod (1984, p. 158ff), May and Nowak (1992), Bonnhoeffer, May and Nowak

4See e.g. Maynard Smith and Price (1973) for static concepts and Taylor and Jonker (1978)
and Zeeman (1981) for a dynamic model)
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(1994), Ellison (1993), Lindgren and Nordahl (1994) and Eshel, Samuelson and
Shaked (1996)) take players’ positions as fixed but allow players to change their
states. Furthermore there are models where both players are allowed to move and
to change their state (see Hegselmann (1994)).

Another distinction is that some authors (like Sakoda, Schelling and Ellison)
assume that players optimize myopically while others (Axelrod, May and Nowak,
Bonnhoeffer, May and Nowak, Lindgren and Nordahl and Eshel, Samuelson and
Shaked) assume that players learn through imitation.

Wolfram (1984) could classify some simple cellular automata but most of them
seem to be too complex to have analytically predictable properties.

Cellular automata with migrating players: Sakoda (1971) presents a ‘checker-
board model of social interaction’. He studies a cellular automaton where cells can
be either empty or occupied by players of one of two types. Types have different
attitudes towards each other and players have randomly the possibility to make
small steps in order to move to an empty position where attitudes towards their
neighbors improve. Sakoda then considers different combinations of attitudes.5 He
explains why groups mix or segregate in certain patterns. He views his model as a
“breakthrough in the wall separating psychological concepts from sociological ones”
(Sakoda 1971, p. 119).

Schelling (1971) studies similarly a model where two types of players live on a
line or, as in Sakoda’s model, on a checkerboard. Players of each type prefer to live
in a neighborhood which consists mainly of their own type. Randomly they get the
opportunity to move to more convenient place. In this framework Schelling studies
various initial configurations and explains how segregations appears via unorganized
individual behavior without any collective enforcement or economic need.

A cellular automata model where both players change their state and their pos-
ition in the network has been proposed by Hegselmann (1994). He studies a model
where the payoffs of the prisoners’ dilemma to be played depend on the ‘risk class’
of the opponents. Players may not change their risk class, but they may choose
the strategy and at least sometimes their location. During all their choices players
optimize myopically. Hegselmann finds convergence both to clusters of players that
belong to a similar risk class and cooperation among members of the same class.

Endogenous networks: The evolution of discriminative behavior in prisoners’
dilemmas has also been studied recently by Ashlock, Stanley and Tesfatsion (1994)
who allow players to ‘refuse to play’ with undesired opponents. Their model pre-
supposes no spatial structure ex ante — the structure is determined endogenously.
The setting that we analyze in the following differs in that the spatial structure is
determined ex ante such that ‘refusal’ is impossible. We introduce a different kind
of ‘variety’ in the space of repeated game strategies allowing for all strategies that
can be represented as small automata.

5Sakoda himself names these attitudes Crossroads, Mutual Suspicion, Segregation, Social
Climber, Social Worker, Boy-Girl, Couples, Husband-Wives.
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Conway’s life: Sakoda and Schelling both analyze a model where states of play-
ers remain constant. The dynamics comes in through traveling of players. John
Conway invented in 1970 the game of life, a cellular automaton, where players do
not have the opportunity to travel but may change their states. Each player can
be in one of two states, alive or dead, and changes her state according to the state
of her eight neighbors. A living player remains alive only if she has two or three
living neighbors, otherwise she dies of loneliness or overpopulation. A dead player
becomes a living player only if she has exactly four neighbors. This cellular auto-
maton produces, starting from various initial configurations, an enormous number
of different patterns of behavior, some of them stable, cycling, moving into a certain
direction and possibly generating new structures up to chaotic behavior.6

Models with myopic optimization: Ellison (1993) presents an analytical model
of a population whose members are distributed on a line. Members of this popula-
tion have rarely the opportunity to change their state. In this case they optimize
myopically. Further there are few mutations of players’ strategies. Except for the
local structure Ellison follows a model of Kandori, Mailath and Rob (1993) and
Young (1993). Both Kandori, Mailath and Rob and Young find that in a global
model a population which plays a coordination game finds in the very long run the
risk dominant equilibrium. The argument in the global model is both with Kandori,
Mailath and Rob and with Young that it takes fewer mutations to move from the
risk dominated equilibrium to the risk dominant than vice versa. Still it might take
a long time to reach the risk dominant equilibrium since the part of the population
which has to mutate simultaneously to initiate such a move can be almost half the
population. Ellison points out that in a local model it is sufficient to begin with
a very small cluster of mutants to immediately start the move towards the risk
dominant equilibrium.

Models with learning through imitation: While in the local models of Schelling,
Sakoda and Ellison players are at least capable to optimize myopically, Axelrod
(1984, p. 158ff), May and Nowak (1992), Bonnhoeffer, May and Nowak (1994),
Lindgren and Nordahl (1994) and Eshel, Samuelson and Shaked (1996) consider a
model where players learn through imitation.

Axelrod (1984, p. 158ff) analyzed a cellular automaton where all cells are oc-
cupied by players that are equipped with different strategies. Players achieve each
period payoffs of a tournament (which consists of 200 repetitions of the underlying
stage game) against all their neighbors respectively. Between periods players copy
successful strategies from their neighborhood. This process gives rise to complex
patterns of different strategies. Axelrod finds that most of the surviving strategies
are strategies that are also successful with global evolution. Nevertheless some of
the locally surviving strategies show only intermediate success in Axelrod’s global

6A finitely large cellular automaton can of course never generate chaos since it has only a limited
number of states — chaos occurs only with automata of infinite size.
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model. These are strategies that get along well with themselves but are only moder-
ately successful against others. They can be successful in the spatial model because
they typically form clusters where they only play against themselves.

A similar model has been studied by Lindgren and Nordahl (1994), who in con-
trast to Axelrod do not analyze evolution of a set of prespecified strategies, but
instead allow strategies to mutate and thus consider a larger number of potential
strategies. Similar to Axelrod, Lindgren and Nordahl assume that reproductive suc-
cess of a strategy is determined by the average payoff of an infinite repetition of a
given game against a player’s neighbors.

While Axelrod and Lindgren and Nordahl study a population with a large num-
ber of possible strategies, May and Nowak (1992) analyze a population playing a
prisoners’ dilemma where players can behave either cooperatively or defectively.
They study various initial configurations and analyze the patterns of behavior that
evolve with synchronous interaction. Bonnhoeffer, May and Nowak (1994) consider
several modifications of this model: They compare various learning rules, discrete
versus continuous time and various geometries of interaction.

Eshel, Samuelson and Shaked (1996) derive analytically the behavior of a partic-
ular cellular automaton. The price they have to pay for the beauty of the analytical
result is the restriction to a small set of parameters. So they have to assume a
particular topology and neighborhood structure. They find that there is a range of
prisoners’ dilemmas where increasing the gains from cooperation reduces the amount
of players who actually cooperate. It is not clear how their result depends on the
particular set of parameters they analyze.

The model that we are going to present in this paper: In the following we
will study a model where players are not allowed to travel but where they change
their states while learning successful strategies. Thus, our model is more related
to Axelrod (1984, p. 158ff), May and Nowak (1992, 1993), Bonnhoeffer, May and
Nowak (1994), Lindgren and Nordahl (1994) and Eshel, Samuelson and Shaked
(1996)

In contrast to May and Nowak and Bonnhoeffer, May and Nowak we allow for
different actions against different opponents if histories against these opponents are
different. We introduce discriminative behavior of players in representing strategies
of the repeated game as small automata that are identical for a player, but possibly
in different states against different neighbors.

While introducing discriminative behavior might seem similar to the repeated
game strategies in Axelrod and in Lindgren and Nordahl, there are some important
differences. Axelrod and Lindgren and Nordahl assume that players simultaneously
participate in a tournament and then synchronously update their strategies. If a
player preserves her repeated game strategies in the next round this strategy is
‘reset’ during the learning stage. Thus players’ behavior previous to a learning step
influences players’ behavior after the learning step only through the learning process
and not due to properties of the repeated game strategy. We see two possibilities
to interpret Axelrod’s model:

It is possible to understand the evolutionary process described by Axelrod and
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Lindgren and Nordahl as one with a particular synchronization of learning and
memory where after each learning event all players completely forget their experi-
ences from the previous round. A justification for this synchronization is hard to
find. We will explain below how properties of a synchronized model differ from an
asynchronous model.

Another possible interpretation of Axelrod’s and Lindgren and Nordahl’s model
would be to represent the choice of a repeated game strategy for a single tournament
(which consists of playing the stage game repeatedly for a given number of periods)
as the choice of a stage game strategy for a coordination game. If we follow this
interpretation a major difference between our’s and Axelrod’s respective Lindgren
and Nordahl’s model is that we assume neighbors of learning players to preserve
their memory.

A substantial difference to the models of Axelrod, May and Nowak, Lindgren
and Nordahl and Eshel, Samuelson and Shaked is that not everybody learns at the
same time. While the synchronization of learning and interaction simplifies the
analysis a lot, it is hard to justify. We explain below in detail how properties of a
model with such a synchronization differ substantially from those of a model which is
asynchronous. We therefore concentrate mainly on a model where both interaction
and learning are independent stochastic events.

That introducing stochastic interaction and evolution might matter has recently
also been mentioned by Glance and Huberman (1993) who argue that cooperation
might be extinguished by introduction of stochastic behavior. Bonnhoeffer, May
and Nowak (1994) argue on the other hand that introducing stochastic behavior
matters only little. While we completely agree with the spirit of both argument we,
nevertheless, try to point out that not the mere fact of introducing stochastic beha-
vior determines the amount of cooperation. It is the way how stochastic behavior
is introduced that determines persistence or breakdown of cooperation.

While the cellular automaton model of a population and the introduction of
discriminative behavior incorporates more real life flavor, it is on the other hand
more difficult to analyze.

We have therefore tried to replace analytical beauty by extensive simulations.
We carried out about 60 000 simulations on tori ranging from 80×80 up to 160×160
and continuing from 1000 to 1000 000 periods. It turns out that most of the results
vary only slightly and in an intuitive way with the parametrization of the model.
Thus, results can be regarded as robust.

We will present the model in sections 2.1 to 2.9. Section 3.1 discusses which
properties of our simulations are stable in the long run, section 3.2 describes the
space of games that we consider, section 3.3 studies a simplified model and gives a
first impression of what we can expect in the cellular automaton model. Section 3.4
discusses the representation of our results. Section 3.5 connects our results to the
findings of May and Nowak (1992, 1993) investigating several models with simple
repeated game strategies that are more similar to their model. Section 3.6 extends
the model to more complex (two-state) repeated game strategies, section 3.8 extends
the analysis to coordination games and sections 3.9 and 3.10 discuss robustness of
the results. Section 4 finally draws some conclusions.
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Figure 1: Properties of a player.

2 The Model

2.1 Overview

The environment We will consider a population of players each occupying one
cell of a torus of size 80×80. Details of the spatial structure are described in section
2.2, the neighborhoods are described in section 2.3 and timing will be discussed
in section 2.4. Players will play games with their neighbors on this network and
learn repeated game strategies from their neighbors. The games and strategies are
described in sections 2.5 and 2.6. The learning behavior of the players will be
described in sections 2.7 and 2.8.

Simulations will start from random initial configurations which are described in
detail in section 2.9 on page 20. Simulations will be repeated over and over again7

for different games.

Players’ characteristics Players are described by two characteristics: Stage
game strategies and a repeated game strategy.

We visualize the two parameters with the help of figure 1 on the page before.

• A player’s repeated game strategy is influenced by following factors: A fixed
learning rule, information on the player’s own payoff and repeated game

7Simulations will be repeated at least 800 times.
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strategy and information on her neighbors’ payoff and their repeated game
strategy. One might interpret the learning rule as a function that takes a
player’s and her neighbors’ payoff and repeated game strategy as arguments,
thus, determining a new repeated game strategy for the player. We will study
two learning rules, one that copies always the repeated game strategy of the
most successful player in the neighborhood and the other which copies the
most successful (on average) repeated game strategy in the neighborhood. More
details on selection of repeated game strategies can be found in section 2.8 on
page 17.

• A player’s stage game strategies are determined by her repeated game strategy
and her neighbors’ stage game behavior. One might interpret a player’s re-
peated game strategy as a function that takes her neighbors’ stage game be-
havior as arguments to determine a player’s stage game strategies. How stage
game strategies are determined by repeated game strategies is discussed in
more detail in section 2.6 on page 12.

Stage game strategies determine interactions among players. Given an exogen-
ously specified stage game stage game strategies of two players determine stage
game payoffs. These payoffs contribute to the payoffs of the repeated game
strategies. On the basis of the latter payoffs new repeated game strategies are
selected. Payoffs of the repeated game strategy may be the payoffs players
received in the current period or may be averages over several periods (see
section 2.7 for details).

The above two properties change randomly and at different speeds. Players inter-
act with a high probability and change their repeated game strategy with a low
probability. Details of the timing are described in section 2.4 on the following page.

2.2 Spatial Structure

Players are assumed to live on a torus8. We represent the torus as a rectangular
network, e.g. a huge checkerboard. The edges of this network are pasted together.
Each cell on the network is occupied by one player. We use a torus instead of a
simple checkerboard to avoid boundary effects. Thus, the neighborhood of all players
has the same structure.

A location may represent a geographical position and interaction only with geo-
graphical neighbors. However, location can also be interpreted as producing a cer-
tain differentiated product and interaction only with producers that manufacture a
similar product. Further, in the context of a model with overlapping generations
one dimension of location can represent time where interaction takes place only with
the next one or two generations.

8In section 3.10 we will investigate some other topologies where players are located on a circle,
on a cube, or on a hypercube in four dimensions.
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Most simulations were carried out on a square of size 80 × 80. The results
presented in sections 3.9 and 3.10 show that for sufficiently large networks neither
the exact size of the network nor the dimension matter significantly.

2.3 Neighborhoods

In contrast to models of global evolution and interaction we will consider players
who interact only with their neighbors and who learn only from their neighbors.
Below we sketch some neighborhoods characterized by various interaction radii rI.
The possible interaction partners of a player are described as gray circles while the
player itself is represented as a black circle.

rI = 1 rI = 2 rI = 3

Each player has an ‘interaction neighborhood’ of radius rI which determines the set
of player i’s possible opponents N i

I . As will be explained below a player need not
interact in a given period with all members of N i

I .
In the same way we construct a ‘learning neighborhood’ N i

L with a similar struc-
ture, but with a possibly different radius rL. In this paper we will assume always
that whenever a player learns she has information on all members of N i

L.

2.4 The Role of Time

When players interact and learn in the above described neighborhoods we will as-
sume their behavior to be asynchronous. This is possibly not the standard way to
model evolution of repeated game strategies. Let us consider the following example:
We want to model a population where neighboring players interact about once a
day and change their repeated game strategy about once a week. We describe inter-
action of a player with her top and bottom neighbor by • and learning by ◦. Two
weeks in the life of a member of this population could be represented as follows.

• • • • • • • ◦ • • • • • • • ◦ • · · ·
-

time
(1)

For simplicity we could model this behavior assuming that all possible interactions
take place daily while learning and change of repeated game strategies happens only
on Sundays. The following diagram shows a part of the life of three neighbored
players that interact each with their top and bottom neighbor and learn after seven
interactions:

• • • • • • • ◦ • • • • • • • ◦ • · · ·
• • • • • • • ◦ • • • • • • • ◦ • · · ·
• • • • • • • ◦ • • • • • • • ◦ • · · ·

-

time

(2)
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We will see in sections 3.5 and 3.6 that this simplification can influence outcomes
considerably. To introduce what we call ‘asynchronous learning’ we could assume
that not everybody learns on Sundays, but that learning for each player is a random
event that is equally distributed over the whole week. Interactions still take place
synchronously each day at noon. Success or failure of repeated game strategies is
observable in the afternoon, so that each day some players could learn in the evening.
The group of learning players would be different each day. Here again, a small subset
of the population:

• • • • • • • • ◦ • • • • • • • · · ·
• • • • • • ◦ • • • • • • ◦ • • • · · ·
• • • • • ◦ • • • • • • • • ◦ • • · · ·

-

time

(3)

This model still requires players to interact synchronously (at noon) and we will
see that this apparently harmless simplification affects the results. If we look closer
at such a population we might find that on some days a player might interact twice
with her neighbor while on other days she might not interact at all. Given that she
might interact twice on a single day makes it necessary to split one day into at least
two periods. Like the learning events discussed above also interaction could now
occur stochastically in the morning or in the afternoon. If we denote interaction
with the top player by • and by • for the bottom player respectively then the
following sequence might be possible:

• • • • • • • • • • • •◦• • • • • • • • • • • •◦• • • • • • · · ·
• • • • • • • • • • • • • • • • • •◦• • • • • • • • •◦• • • · · ·
• • • • • • • • •◦• • • • • • • • • • • •◦• • • • • • • • • · · ·

-

time

(4)

Evolution of repeated game strategies is often analyzed in a framework that is
similar to diagram 29. When we discuss evolution of repeated game strategies here,
we prefer an environment like the one represented in diagram 4.

To be precise we will assume that each period for each possible interaction a
random draw decides (typically with probability pI = 1/2) whether this interaction
takes place. Thus, each period a player will at time t not play against all her
neighbors N i

I but only against a subset N i,t
I which has on average half the size of

N i
I . Each period t the composition of her opponents will be different. We have used

an interaction probability pI = 1/2 most of the time because it is small enough to
avoid synchronization. Even smaller probabilities for interactions lead to similar
properties, but with smaller probabilities pI our simulations need more time to
approach their long run behavior.

Since we also want the timing of learning to be stochastic, we will assume that
repeated game strategies have something like a stochastic ‘lifetime’ tL that in our
simulations is typically distributed equally between 20 and 28 periods. Once the

9May and Nowak (1992, 1992) and Eshel, Samuelson, and Shaked (1996) assume that learning
takes place after all possible interactions took place exactly once, Axelrod (1984, p. 158ff) assumes
that learning takes place after players interacted synchronously for a large number of periods.
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‘lifetime’ expires players ‘learn’. They possibly change to a new repeated game
strategy and get a new ‘lifetime’ which is again a random number between 20 and
28. We mostly used a ‘lifetime’ in this range because it is large enough to give even
more complex (two-state) repeated game strategies an opportunity to unfold. Thus,
learning is a rare event as compared with interaction. An even larger lifetime leads
to similar properties, but with larger lifetime our simulations need more time to
approach their long run behavior.

2.5 The Stage-Game

The above setting could be applied to all two player games. We will concentrate here
on symmetric 2 × 2 games and in particular to the case of the prisoners’ dilemma.
Stage game strategies will be named C and D.

Notice that all the dynamics of population behavior that will be discussed in
this and the following chapter are invariant to transformations of payoffs like adding
constants or multiplying with a positive number, therefore we can represent the
space of all symmetric prisoners’ dilemmas with the game

Player II

Player
I

a b

a
g

g
1

h

b
h

1
0

0

(5)

where 0 < g < 1, h < 0 and g > 1
2

+ 1
2
h.10

2.6 Repeated-Game Strategies

May and Nowak (1992, 1993) consider a model of spatial evolution of repeated game
strategies which are not discriminative. A player could either always play C against
all her neighbors or always play D. A player having e.g. one neighbor playing always
C and another neighbor playing D might, however, be tempted not to use the same
strategy of the stage game against both neighbors. She might want to discriminate
among her two neighbors.

One way to model discriminative behavior is to assume that players use repeated
game strategies. Models which allow for repeated game strategies in the context of
spation evolution are Axelrod (1984, p. 158ff) and Lindgren and Nordahl (1994).
Both assume that players either simultaneously play tournaments (which consist
of a given number of repetitions of the stage game) or synchronously update their
strategies. Even if a player decides to keep her old strategy (which happens often
once the evolutionary process has approached a more ‘long run’ state) Axelrod and
Lindgren and Nordahl force her to forget what has happened in the previous period.

10We require g < 1 and h < 0 to make C a dominated stage game strategy. Then 0 < g and
g > 1

2 + 1
2h ensure that CC Pareto dominates both DD and cycling between CD and DC.
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In the following we also model discriminative behavior as repeated game
strategies. In contrast to Axelrod and to Lindgren and Nordahl we introduce re-
peated game strategies such that players may remember their opponents’ behavior
even after learning takes place. We will see below that this assumption together
with the fact that players learn asynchronously fosters an interesting property: Het-
erogenous payoffs.

Notation for Moore automata: We here assume that players use repeated game
strategies that can be represented as particular automata that are also called Moore
machines. An example for such an automaton is ‘grim’:

C

C
D

D

CD

Grim is a repeated game strategy that has two ‘states’. The stage game strategy that
is actually used by grim in either of the two states is shown within the two circles.
In the left state grim plays C, in the right state it plays D. The little arrow to the
left of grim that points to the initial state indicates that grim starts always with
its left state, hence begins a game always with C. The notion of automata allows
us to describe how a repeated game strategy reacts upon the opponents behavior.
Possible actions of an opponent are written next to an arrow that leads from the
current state to the next state. Thus, if grim plays currently C while the opponent
plays D then grim will follow the D-arrow and move to the right state. Being in
the right state means that grim will from now on play D as well. If on the other
hand a C-playing grim meets an opponent who plays C as well, then grim takes the
arrow that is labeled C. This leads back to the left state and grim will play C next
time. We see that once grim is in its second state then there is only one arrow to
be taken. Regardless whether the opponent plays C or D this arrow leads always
back to the second state. To summarize, grim will always start friendly and play
C. Grim will remain there as long as the opponent plays C as well. As soon as the
opponent plays a single D grim will switch to its second state and play D forever.
Thus, the behavior of grim is particularly unforgiving.

Another commonly considered repeated game strategy is tit-for-tat:

C

C D

C D

D

Tit-for-tat does exactly what the opponent did in the last period. If the opponent
played D the tit-for-tat replies with D next period, if the opponent was nice and
played C then tomorrow tit-for-tat will play C as well

The following automaton, which we call blinker, may be particularly stupid, but
since we will meet it again in section 3.6 we will explain its behavior:

C

CD

CD D
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Blinker starts always playing C and, regardless of what the opponent does, continues
with D, and then plays C in the next period again.

Of course, it is possible to construct automata with more than two states.
However, in the following we will focus on populations where only repeated game
strategies with less than three states are present. Table 1 on the next page gives a
list of all these automata.

We make this restriction mainly to limit the number of possible automata (there
are only 26 automata with less than three states). We think that this is not a severe
restriction since many interesting repeated game strategies (like grim, tit-for-tat,
tat-for-tit etc.) are already present in this set. We have done some simulations
with more complex automata and found that our results do not change. We think
that evolution of repeated game strategies applies only to contexts where players
do not calculate in a particularly clever way the optimal strategy for a game, but
instead are guided by a simple learning process. Then modeling players’ repeated
game strategies to be less sophisticated is only consistent. We do not claim that all
automata with less than three states are sensible repeated game strategies, but we
expect that in a sensible model odd repeated game strategies should be eliminated
through evolution.

Asynchronous learning of automata: We will now give some examples how
strategic interaction among two players may evolve given that their repeated game
strategies can be characterized by automata. We try to be very detailed in our
examples to make clear that strategic interaction depends on the learning behavior of
our players. In particular it may be important whether players learn synchronously
or asynchronously.

Let us first check what happens if a grim plays against a blinker. In the first
period both will start with their initial state and, thus, both will play C. Grim will
follow the C-arrow that leads back to the left state. Thus, grim will still play C in
the next period. Blinker on the other hand is now in its second state and will play
D. Observing this, grim will now follow the D-arrow and switch to the second state
and, thus, play D in the next period. Blinker meanwhile switched back to C. From
now on grim will always play D, while blinker switches constantly between C and
D. The sequence of actions is then as follows:

Period: 1 2 3 4 5 6 7 8 9 · · ·
Grim’s action: C C D D D D D D D · · ·
Blinker’s action: C D C D C D C D C · · ·

Let us assume on the other hand two grims that play against each other. Both
will start to play C and will never have any reason to switch to their second state.
Thus, the pattern of actions will be the following:

Period: 1 2 3 4 5 6 7 8 9 · · ·
1st Grim’s action: C C C C C C C C C · · ·
2nd Grim’s action: C C C C C C C C C · · ·

Above we have only considered interaction of no more than two players. In the
networks that we will discuss below a single player will have several neighbors. For
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always cooperate
C

CD

forgive quickly
C

C D

CD D

tit-for-tat
C

C D

C D

D

C

C D

D D

C

grim
C

C
D

D

CD

C

D C

CD D

reverse tat-for-tit
C

D C

C D

D

C

D C

D D

C

C

D
C

D

CD

blinker
C

CD

CD D

C

CD

C D

D

C

CD

D D

C

cooperate once,
defect forever

C
CD

D

CD

always defect
D

CD

D

C D

CD C

D

C D

C C

D

tat-for-tit
D

C D

D C

C

D

C
D

C

CD

D

D C

CD C

D

D C

C C

D

reverse tit-for-tat
D

D C

D C

C

reverse grim
D

D
C

C

CD

reverse blinker
D

CD

CD C

D

CD

C C

D

D

CD

D C

C

defect once, co-
operate forever

D
CD

C

CD

Table 1: All 26 automata with less than three states
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each of her neighbors she has a copy of her automaton. While all automata of one
player are identical for all of her neighbors they can be in different states, thus,
allowing for distinguishing behavior.

To give an example, imagine three players that might occupy three floors of a
house. All of them play a prisoners’ dilemma against their immediate neighbor. The
second floor player interacts both with the third floor player and with the first floor
player while the latter do not interact with each other. Now assume both the second
and the third floor plays grim while the first floor plays blinker. Following the same
considerations as above we have the following interactions:

Period: 1 2 3 4 5 6 7 8 9 · · ·
3rd’s behavior vs. 2nd: C C C C C C C C C · · ·
2nd’s behavior vs. 3rd: C C C C C C C C C · · ·
2nd’s behavior vs. 1st: C C D D D D D D D · · ·
1st’s behavior vs. 2nd: C D C D C D C D C · · ·

This gives already an example for discriminating behavior of the second floor player.
Since we combine interaction and evolution it might happen that at some stage the
first floor player learns to use a different repeated game strategy. Let us assume this
happens in period 15 where she becomes a grim. The sequence of actions is then as
follows:

Period: · · · 12 13 14 15 16 17 18 19 · · ·
3rd’s behavior vs. 2nd: · · · C C C C C C C C · · ·
2nd’s behavior vs. 3rd: · · · C C C C C C C C · · ·
2nd’s behavior vs. 1st: · · · D D D D D D D D · · ·
1st’s behavior vs. 2nd: · · · D C D C D D D D · · ·

The newborn grim starts cooperatively in period 15, but finds out that its opponent
from the second floor already defects and therefore switches to her second state as
well. Thus, we see two different pairs of grim here. The top pair cooperates all the
time while the bottom pair defects from period 16 on.

This behavior occurs due to asynchronous learning. If players were to learn
synchronously in one and the same period and afterwards everybody would start in
the first state such phenomena would be excluded.

2.7 Relevant history

When players learn, one source of information they will use will be average payoffs
(per interaction) of their neighbors. In the following we will describe how these
average payoffs are calculated. We will denote the set of periods that player i
considers as relevant or that she can access in period t with Ei,t. We will consider
two extreme cases. A player could regard only today’s payoffs and interactions as
relevant. We will call this ‘short memory’.

Ei,t := {t} (6)

The other extreme case that we consider assumes that all the payoffs and interactions
that a player experienced while using the same repeated game strategy without
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interruption are relevant for her learning decision. Thus, if a player used repeated
game strategy A for the last 24 periods, then all payoffs and interactions achieved
during these 24 periods count for the average payoff of this player. We will call this
‘long memory’. Denote player i’s repeated game strategy at time t with xi,t then we
formulate ‘long memory’

Ei,t :=
{
t′|∀τ≥t′ : xi,τ = xi,t

}
. (7)

Long memory is adequate in the context of the repeated game strategies that we
analyze. We have seen in section 2.6 that the usage of repeated game strategies
may lead to patterns of changing payoffs. E.g. the blinker that plays against a
grim alternates in a prisoners’ dilemma between low payoffs in odd periods and
high payoffs in even periods. Observing only current period’s payoff may lead to a
seriously wrong perception of a repeated game strategy’s performance. Averaging
over several periods avoids this problem.

We sum up the total number of player i’s interactions with her current repeated
game strategy during the relevant history Ei,t as

ni,te :=
∑
τ∈Ei,t

|N i,τ
I | . (8)

We sum up player i’s payoff during Ei,t as

ui,te :=
∑
τ∈Ei,t

ui,τ . (9)

Below we need a definition of ‘users’ of a repeated game strategy s at time t in the
neighborhood of player i:

U i,t
s :=

{
j|j ∈ N i

L ∧ x
j,t = s

}
(10)

2.8 Update of Repeated Game Strategies

In section 2.4 we have already discussed various assumptions concerning when play-
ers could get an opportunity to update their repeated game strategies. In the current
section we will discuss what kind of information players have when they get a learn-
ing opportunity and how they will use it.

We will assume players whose capabilities are restricted in several ways. They are
not fully rational, they are not able or not willing to analyze games, and they do not
try to predict their opponents’ behavior. Nevertheless, players’ behavior will have
some structure since it is guided by imitation of successful repeated game strategies.
Often players simply copy good examples without knowing why the example was
so successful and without spending much effort in checking whether this repeated
game strategy might be as promising for the copying player herself.

We assume that such an imitating player has incomplete information about the
total population. All she can observe are repeated game strategies and their respect-
ive average payoffs per interaction in her neighborhood N i

L. We may imagine that
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when in period t a player learns she asks her neighbors j ∈ N i
L for their strategy

xj,t and their respective average payoff per interaction uj,t. As an example let us
consider the following population that lives on a line:11

player:
repeated game strategy:
average payoff per interaction:
number of interactions:

· · ·

i−4

A
12
5

i−3

A
4
4

i−2

A
5
5

i−1

B
6
2

i

C
4
4

i+1

B
0
4

i+2

A
3
4

i+3

C
−
0︸ ︷︷ ︸

player i’s learning
neighborhood N i

L

i+4

D
3
2

· · ·

(11)
Assume that player i learns and that she can see three players to the left and three
players to the right. Thus, she does not realize that farther to the left there is an A
with a high average payoff of 12. Nor can she see that there even exists a repeated
game strategy D. She only observes three As with payoffs 3, 4 and 5, two Bs with
payoffs 0 and 6 and two Cs, one of them with payoff 4 (she herself) and one of them
with no interactions at all.

How can a player evaluate this information? In the following we will study two
possible learning rules:

2.8.1 Copy Best Player

A learning player could simply look around in the neighborhood which she observes
and determine the player with the highest average payoff per interaction. In our
example she will find that the highest payoff (6) is achieved by a B.

A learning player that uses the rule ‘copy best player’ will adopt the repeated
game strategy of the most successful player, which is in our example a B. Of course,
it could well be that there is more than a single player who has the maximal payoff.
In this case players need a tie breaking rule. We will assume that if a players’
current repeated game strategy is already among the repeated game strategies of
the best players, then she keeps her current repeated game strategy. Otherwise she
randomizes among the repeated game strategies of the most successful players. We
assume here that the probability to adopt a certain players’ repeated game strategy
will be proportional to the number of interactions that led to the payoff of the
respective player.12 This can be formalized as follows: The set of most successful
players that player i observes at time t will be called M i,t.

M i,t := arg max
j∈N i

L

(
uj,te

ni,te

)
(12)

11Notice that most of our simulations below assume that players live on a torus and not on a
line. We give an example for a player’s learning behavior on a line just because it is easier to
visualize.

12We have done simulations with other tie-breaking rules and got the impression that the par-
ticular choice of the tie-breaking rules has no influence.
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Then the probability to choose repeated game strategy s in period t+1 is determined
as

P (xi,t+1 = s) :=



1 if xi,t ∈ {xj,t|j ∈M i,t} and s = xi,t

0 if xi,t ∈ {xj,t|j ∈M i,t} and s 6= xi,t∑
j∈M i,t∧xj,t=s

nj,te∑
j∈M i,t

nj,te

otherwise
. (13)

2.8.2 Copy Best Strategy

A learning player could also look at average payoffs of a repeated game strategy s
at time t in the neighborhood of player i which we denote with f i,ts :

f i,ts :=



∑
j∈U i,ts

uj,te∑
j∈U i,ts

nj,te

if
∑
j∈U i,ts

nj,te > 0

−∞ otherwise

(14)

If a repeated game strategy is not used in a neighborhood we define its fitness to be
−∞ which means that it will never be selected by an evolutionary process.

In example 11 on the preceding page the learning player would find out that
strategy A has an average payoff per interaction of 5, strategy B has an average
payoff per interaction of 2, and strategy C has an average payoff of 4.

A learning player that uses the rule ‘copy best strategy’ switches to the repeated
game strategy with the highest average payoff, thus, in our example she will become
an A. Again there could be more than one repeated game strategy with maximal
payoff. The tie breaking rule will be similar to the one we assumed in section 2.8.1.
If the current repeated game strategy of the player is among the most successful
repeated game strategies then the learning player keeps her current repeated game
strategy. Otherwise she adopts one of the best repeated game strategies randomly
with probabilities proportional to the number of interactions the users of the re-
spective repeated game strategies had. This can be formalized as follows: Define
the set of most successful repeated game strategies as

N i,t := arg max
s

(
f i,ts
)
. (15)

The probability that player i uses repeated game strategy s in the next period is
then

P (xi,t+1 = s) :=



1 if xi,t ∈ N i,t and s = xi,t

0 if xi,t ∈ N i,t and s 6= xi,t∑
j∈U i,ts

nj,te∑
σ∈N i,t

∑
j∈U i,tσ

nj,te

otherwise
. (16)
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2.8.3 Symmetry of Learning Rules

Notice that both learning rules described above are symmetric in the sense that a
player puts the same weight on her own experience (payoff) and on the experience
of the observed players.13 Kirchkamp and Schlag (1995) find that once evolution
selects a player’s learning rule, these rules turn out to be asymmetric and put more
weight on their own payoff. We nevertheless think that symmetric rules have some
appeal for their simplicity.

2.8.4 Learning Repeated Game Strategies with Multiple States

If players learn repeated game strategies with a single state (like, play always D)
they obviously have to use this state from the next period on. If players on the other
hand learn repeated game strategies with multiple states (that are represented as
automata) we have to explain which state of the automaton players use when they
start using it. We find it reasonable to assume that players start with the initial state
of the automaton against all their neighbors when they learned a new automaton.
When a player has the opportunity to learn, but does not change to a different
automaton we assume that she continues to use the same automata in whatever
states it actually is against her different neighbors.

2.9 Initial State of the Population

We assume that the network is initialized randomly. I.e. first proportions of the
available repeated game strategies are determined randomly (following an equal
distribution over the simplex of relative frequencies) and then for each location in
the network an initial repeated game strategy is selected according to the defined
frequency of strategies. Thus, all simulations start from very different initial config-
urations. If nevertheless results are structured (as they are) they can be viewed as
particularly robust.

3 Results with Fixed Learning Rules

3.1 Convergence

Before we talk about results of simulations, which properties of our simulated popu-
lations behave stable in the long run. In the following paragraph we give an example
for the fact that the state of single players may be constantly changing even in the
long run. Still some statistics, like proportions of stage game strategies, approach a
behavior which is stable in the long run.

13To be precise, due to our tie-breaking rule, learning rules behave not completely symmetric
in the case when several repeated game strategies achieve maximal payoff and the player’s current
repeated game strategy is among these strategies.
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Figure 2: Part of an example net after 2000 periods.

For illustration let us consider a very simple simulation, where the game

Player II

Player
I

a b

a
0.3

0.3
1

−0.7

b
−0.7

1
0

0

is played on a torus of size 80× 80 with neighborhood radius rL = rI = 1, determ-
inistic interaction pI = 1 and stochastic timing of evolution tL ∈ {10 . . . 14}. The
network is initialized randomly. For simplicity of graphic representation we assume
that only the following three automata are present in the network. They are denoted
with the following symbols:

Automata Symbols

C

CD

CD D
×

C

CD

C D

D
·

D

CD
•

A typical state of a network after 2000 generations is displayed in figure 2 on the
next page. Here players are still permanently changing their repeated game strategy.
Thus, at least for this example, even after 2000 periods the population did not
converge to a state where each individual’s behavior remains constant. Nevertheless
the some properties of the system seem to be stable in the long run. Proportions of
automata and proportions of actions remain more or less constant even if a single
player never uses one and the same automaton forever.

Figure 3 on the following page shows the typical development of the frequency of
the pair of stage game strategies CD and DC on the vertical axis. The horizontal
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Figure 3: Convergence: Two-State-Strategies, pI = 1
2
, tL ∈ {20, . . . , 28}, copy-best-

strategy, short memory, rL = rI = 1, network=80× 80, g = 0.3, h = −0.7,

axis shows time. While after a period of stabilization a more or less constant value
for the proportion of CD is achieved the proportion seems not to converge. The
observed values oscillate within a small radius. This behavior persists even during
very long simulations. Most of our simulations continued for 1000 to 2000 periods.
We have done 2000 simulations that continued for 20 000 periods and even some
lasting for up to 1000 000 periods. These longer simulations lead exactly to the
same property. For all the simulations we did, the proportions of repeated game
strategies or the proportions of pairs of stage game strategies oscillate within a
radius which is small as compared to changes of the same statistics that result from
changes of the underlying game or other parameters.

We will observe later that proportions of repeated game strategies and propor-
tions of combinations of stage game strategies do not depend on the initial con-
figuration of the network if the network starts from a sufficiently random initial
configuration.

In the following we will, therefore, not look at the exact state of the network
(because this is confusing as figure 2 on the page before shows), but we will look
only at relative proportions of automata.

To focus on the essentials we will concentrate mainly on the proportion of com-
binations of stage game strategies CC, CD, DC and DD. Thus, we do not know
exactly, which players play a certain combination of stage game strategies, (which
repeated game strategy a player uses) and why they do it, but we know at least
what pairs of stage game strategies are played. In sections 3.6.1 and 3.7.1 we will
also look at repeated game strategies.
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Figure 4: The space of considered stage-games.

3.2 Representation of the Space of Considered Stage Games

In this paper we look at symmetric 2× 2 games. These games are parameterized by
four payoffs. Given our learning rules several of these games behave equivalently. It
is sufficient to study a very small subset of of all symmetric 2× 2 games which can
be parameterized by only two payoffs.

Evolutionary dynamics as given by the learning rules ‘copy best player’ and ‘copy
best strategy’ (see sections 2.8.1 and 2.8.2) will not change if we multiply all payoffs
of a game with a positive constant or if we add a constant to all payoffs of the game.
But then it is sufficient to analyze only a small subset of all possible 2× 2 games.
All generic14 symmetric 2×2 games can be derived from the games given in figure 4
on the following page. These latter games are described by only two parameters g
and h, thus, they are easily represented in a plane.

Figure 4 on the next page shows for both types of stage games the regions of
different equilibria. CC and DD denote regions of games which are not prisoners’
dilemmas and which have only one Nash equilibrium. CCPD and DDPD denote
prisoners’ dilemmas with one equilibrium, CD,DC is a region where CD and DC

14Generic in payoff space.

23



are symmetric equilibria of the stage game, and CC risk
> DD and DD risk

> CC denote
regions with two equilibria in pure strategies where one risk dominates the other.
The dashed and dotted diagonal lines will be described in section 3.3 below.

Some symmetric 2× 2 games are contained both in the representation of figure
4.a and figure 4.b. Games from figure 4.b can be transformed to the shape of figure
4.a by subtracting g from all payoffs, then dividing by h− g and finally exchanging
the names of the stage game strategies. Similarly games from figure 4.a can be
transformed into the shape of figure 4.b. As long as h > g (given the representation
of figure 4.b) this transformation does not change the best reply structure of the
game. This means in particular that the same prisoners’ dilemmas are contained
both in figure 4.a and 4.b. Whenever we study prisoners’ dilemmas we can therefore
without loss of generality restrict ourselves to the DDPD -section of figure 4.a.

3.3 A Model of Clusters

Before we turn to the simulation results of the complex model that we have described
in section 2, let us make an estimation of how such a model might behave. To do
this, we will study a simpler model in a continuous framework An argument which
is similar to the following but which applies to a discrete framework has been made
by Eshel, Samuelson and Shaked (1996). We will study a situation which occurs
frequently in a model with local learning: players learning between two clusters. The
reason to study the situation at the border between two clusters it that due to the
local learning strategies can not appear in an isolated spot. When a player adopts
a new strategy we will find the same strategy already in the neighborhood. Thus,
we should expect strategies to appear in homogeneous clusters. Changes are most
likely to appear at the border between two clusters. We will study the situation at
this border. We will first find that if clusters are already large then the behavior of
the system can be estimated easily.

Then we look at smaller clusters. There we will find that systems where small
clusters are present have the tendency that some clusters will vanish completely
creating, thus, new large clusters. The behavior of a large cluster system can then
be studied easily with the model of large clusters.

Large clusters: Let us assume (we make this assumption only for the current
section) that players are continuously distributed along a line and that both learning
and interaction radius are r. Players copy the strategy with the highest average
payoff in their learning neighborhood. Let us consider a player at position x̂ between
two of these clusters. Let us first assume that the world consists of only two clusters,
each of infinite length. We will later see that it is enough to assume that clusters
have a length n which is larger than 2r.

All players at position x < x̂ play C, all players at x > x̂ play D. Since the
interaction radius is r, a player that lives at position x has the probability pC(x) to
meet another C.

pC(x) =

{
1 if x ≤ x̂− r
r+x̂−x

2r
if x ∈ (x̂− r, x̂+ r)

0 if x ≥ x̂+ r

(17)
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The probability to meet a D is 1 − pC(x). Since the learning radius is r as well,
average payoffs uC and uD for the two strategies can be calculated for the player at
x̂ as

uC =
3g + h

4
uD = ±

1

4
(18)

for the games in figure 4. a
b

respectively. Given the game in figure 4a
b

our player at
position x̂ will imitate a C if g > (−h ± 1)/3 and a D if g < (−h ± 1)/3. The
dashed lines in figure 4 represent the games where our player at x̂ is indifferent
which clusters’ strategy she should follow. Above she will become a C, below she
will become a D. In these cases we will, starting from sufficiently large clusters,
observe that either only the C or only the D clusters will grow — depending on
whether we are above or below the dashed line.

Small clusters: In the above paragraph we have assumed that the homogeneous
clusters which contain only a single strategy are large. To be precise, their diameter
had to be larger than 2r. The same calculation we have done above can also be done
for clusters which are smaller. In the following we will assume that clusters are not
smaller than the learning and interaction radius. Let us assume the world consists of
a sequence of alternating clusters whose members play C and D respectively. The
C playing clusters have radius nCr where nC ∈ [1, 2] and the D playing clusters
have radius nDr where nD ∈ [1, 2].15 Then a player who lives precisely between two
clusters sees for both clusters a proportion of

F (n) =
1

4
(5− 4n + n2) (19)

(for n = nC and n = nD respectively) playing against the respective opposite
strategy. The remaining 1− F (n) play against their fellows which are in the same
cluster. Then average payoffs are

uC = (1− F (nC))g + F (nC)h uD = ±F (nD) (20)

for the games in figure 4. a
b

respectively. The difference uC − uD is a quadratic
function of nC and nD

uC − uD = g +
1

4
(−g + h)(5− 4nC + n2

C)∓
1

4
(5− 4nD + n2

D) (21)

depending on the type of the game (figure 4.a
b
). It is now interesting to know for

which values of nC and nD the expression uC−uD is positive or negative. If uC−uD is
positive then nC will grow while nD will shrink and vice versa. For a given prisoners’
dilemma the region where uC−uD is positive is an ellipsis around (nC , nD) = (2, 2).
For a given coordination game this region is bounded by a hyperbola with center

15The precise analysis of even smaller clusters becomes really tedious. We think that it is
reasonable to assume that our approach estimates even the behavior of smaller clusters where
n < 1.
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(nC , nD) = (2, 2) as long as g > h otherwise it is again an ellipsis around (nC , nD) =
(2, 2).

For coordination games where g > h and for a given combination (nC , nD) one
of nC or nD will grow until the boundary is reached. Thus, clusters become larger
and larger until for all clusters n > 2r. But then we can follow the simple analysis
for large clusters given above and conclude that in a coordination game C wins if
g > (−h− 1)/3.

For prisoners’ dilemmas things are slightly more complicated. Assume that we
start inside the ellipsis where uC > uD. Then nC will grow until the boundary of
the ellipsis is reached. At this stage the boundary between the two clusters may
stop moving. We have now a small cluster of Ds next to a large cluster of Cs.

This situation is stable because the smaller the cluster of Ds becomes the less
important the negative influence among the Ds will be but the more important the
gain they have from being close to many Cs.

Therefore in a prisoners’ dilemma small clusters of Ds may survive together with
Cs. This means that in a prisoners’ dilemma our above estimate (for large) clusters
was possibly too optimistic. Instead it might happen that size of clusters remains
small and that the region where cooperation is stable is smaller than with large
clusters.

Given the game in figure 4 player x̂ will become a C if

g >
∓(5− 4nD + n2

D) + h(5− 4nC + n2
C)

1− 4nC + n2
C

(22)

for the games in figure 4. a
b

respectively. The dotted lines in figure 4 represent the
games where our player at x̂ is indifferent which cluster’s strategy she should follow,
given that clusters have a diameter of 3r/2 or 5r/4, i.e. the case nC = nD = 1.5
and nC = nD = 1.25. In this case our player will become a C above the respective
dotted line, below she will become a D. If clusters become smaller, then nC and
nD shrink and the set of games where a player x̂ is indifferent between the left and
the right cluster moves (for prisoners’ dilemmas) upwards. For prisoners’ dilemma
games this means in particular that the smaller clusters are, the smaller the set of
prisoners’ dilemmas where we should expect cooperation will be. As long as cluster
size remains constant for all games, we should expect the borderline of cooperative
behavior to have a linear shape as described by inequality 22. Our simulations show
that this borderline has for a reasonable parametrization indeed a linear shape.

In the remainder of the paper we will consider the discrete model described
in section 2. Players will be discrete, we will most of the time consider a two
dimensional network and the size of the clusters will be determined endogenously.
We will see that the continuous model of the current section gives a surprisingly
good approximation of the discrete model that we will study in the following.

3.4 Representation of the Results

To explain the representation of the results take for example figure 6 on page 30. The
figure shows the results of 800 different simulations. We choose 800 times randomly
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different combinations of g and h. Taking the structure of game 5 on page 12 as
given, specific values of g and h define a specific game. g and h were chosen such
that most of these games were prisoners’ dilemmas (0 ≤ g ≤ 1 and −2.5 ≤ h ≤ 0).
With such a game a simulation is started and runs for 2000 periods. As already
mentioned in section 3.1, after 2000 periods we can expect that population statistics
like proportions of stage game strategies or automata have approached their long
run behavior.

Figure 6 shows three such statistics which are represented as circles in each of
the three diagrams (one circle for each of the 800 simulations). The position of the
circle indicates the payoffs g and h and, thus, the respective game. The size of the
circle is in the first diagram proportional to the number of observed combinations of
stage game strategies CC, in the second proportional to CD (and DC respectively)
and in the third proportional to DD. If the frequency of the respective combination
of strategies is zero, no circle is plotted.

Following the discussion in section 3.3 we have also indicated in figure 6 the set
of games where inequality 22 becomes binding for various values of n. The solid
gray line corresponds to the case nC = nD = 2, the dashed gray lines represent
nC = nD = 1.5 and nC = nD = 1.25.

3.5 Simple (One State) Strategies

Before turning to two-state strategies we will first analyze a simple model (similar
to May and Nowak’s (1992, 1993)) where only two simple (one-state) repeated game
strategies ‘always C’ and ‘always D’ (in the following denoted with ‘C’ and ‘D’) are
allowed.

We know from global models that, whatever the rest of the population does, D
is always more successful than C, thus, we should expect C to die out in the long
run. The following paragraph sketches the idea why in a local model under certain
circumstances C can survive.

Certainly a single C-playing automaton cannot survive if it is surrounded and
exploited by Ds. However, we may imagine a cluster of Cs surrounded by Ds. Here
Ds that are located close to the cluster of Cs can observe that the Cs receive a high
payoff, because they cooperate with each other. So a D might learn that C is a
successful strategy and, thus, become a C. This explains why Cs do not die out
necessarily. A C that is situated close to the borderline between C and D is likely
to change to a D. Its payoff from interaction with a C becomes low if gains g from
cooperation are low. Furthermore its D-playing neighbors have a fairly attractive
payoff because they are able to exploit at least one C. If gains from cooperation
are sufficiently low the average success of D close to the border between C and D is
higher than the average success of C. Therefore, we can expect survival of Cs only
for games where cooperation is not too costly.

Figure 5 on the following page gives an example for the above argument. Assume
that a large population plays the game given in figure 5. Most of the population
cooperates but let us assume that somewhere a single player plays D. The left
part of figure 5 displays the population around this player. When her cooperating
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Player II

Player

I

C D

C
7/8

7/8

1

−1/8

D
−1/8

1

0

0

Neighborhoods for learning and in-
teraction contain the eight immedi-
ate neighbors. Players interact with
certainty. Only today’s payoffs mat-
ter. The learning rule is ‘copy best
strategy’. Strategies are: C and D.
The population cycles between the
following two states:

C7 C7 C7 C7 C7

C7 C6 C6 C6 C7

C7 C6 D8 C6 C7

C7 C6 C6 C6 C7

C7 C7 C7 C7 C7

⇔

C6 C5 C4 C5 C6

C5 D5 D3 D5 C5

C4 D3 D0 D3 C4

C5 D5 D3 D5 C5

C6 C5 C4 C5 C6

odd periods even periods

Figure 5: An example for the survival of C.

neighbors calculate average payoffs per interaction they will find that D is more
successful than C and become a D in the next period. In the next period we have
already nine Ds in the population. This state of the population is displayed in the
right part of figure 5. But now the situation of the D is different. The initial D
sees nothing but Ds in its neighborhood, thus, it has no opportunity to change its
strategy. The newborn Ds on the other hand will find that C receives on average a
higher payoff than D. Thus, all of them will become a C in the next period. Now
we are back again in the left part of figure 5.

May and Nowak (1992, 1993) consider a similar spatial model where only Cs
and Ds play a prisoners’ dilemma. They assume the learning rule ‘copy best player’
(see section 2.8.1 on page 18), synchronous interaction (pI = 1), and synchronous
evolution (tL = 1). One of their results is that for certain initial configurations and
for certain payoffs cooperation may indeed persist in a given prisoners’ dilemma.

Do we also observe cooperation for other initial configurations and does cooper-
ation persist in other games even when it is more costly? The upper left part of
figure 6 on the following page shows a dark area which indicates the small range
of payoffs where most simulations lead to mutual cooperation in May and Nowak’s
model. It is no surprise that this small area is close to g = 1 and h = 0, i.e. close
to a range of payoffs where cooperation does not cost too much. The borderline
between cooperation and defection follows the prediction given in section 3.3 for a
cluster size of about 1.2r.

We also see that some simulations lead to mutual cooperation for smaller values
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Figure 6: One-State-Strategies, pI = 1, tL = 1, copy-best-player, short memory,
rL = rI = 1, network=80× 80.

of h. Closer inspection shows that this was only the case for certain initial con-
figurations, since most of the simulations in this area lead to a mutually defecting
population (see the bottom left part of figure 6).

Observation 1 Local evolutionary dynamics with only simple (one-state) strategies
explain deviation from the Nash Equilibrium solution only to a small extent.

Glance and Huberman (1993) questioned May and Nowak’s model arguing that
due to the deterministic dynamics the network might run into cycles that are un-
stable against small perturbations. They suggested random sequential learning to
model more realistic timing. While in each period all possible interactions take place,
only one single player learns in a given period. The order in which players learn
is determined randomly. In a particular setting16, where May and Nowak found
cooperation, random sequential learning leads to general defection. We agree with
their finding that for a given initial state cooperation might vanish once stochastic
timing is introduced. We have analyzed the influence of stochastic behavior in the
framework that was described in section 2.4 on page 10. The precise way to intro-
duce stochastic behavior differs slightly from Glance and Huberman’s model17 but,
as we observe in figure 7 on the following page, the precise way how a stochastic

16The initial configuration, game, learning rule etc. corresponds to figure 3.a–c of May and
Nowak (1992).

17Glance and Huberman give each period at most one player an opportunity to change her
strategy and players interact each period deterministically, i.e. each possible interaction takes
place with certainty. In our setting each possible interaction takes place with probability 1/2 and
players learn randomly after 20. . . 28 periods.
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Figure 7: Stochastic learning eliminates cooperation only with ‘short memory’ (‘copy
best player’ learning rule, network=80× 80, r = 1).

environment is modeled does not matter. Cooperation dies out both in Glance and
Huberman’s and in our simulations.

To save space we display only the proportion of mutual cooperation for a variety
of models. The top left diagram in figure 7 displays the proportion of cooperation
in May and Nowak’s model. We have seen this diagram already in figure 6 on the
page before. The top right diagram in figure 7 displays the same model, but now
with stochastic learning and interaction.

We see that for most of the prisoners’ dilemmas where we found cooperation in
the deterministic model on the left, cooperation disappeared in the stochastic model
on the right. Thus, Glance and Huberman’s criticism holds not only for a particular
game and initial configuration, but also for a lot of games and initial configurations.

So far we use only short memory (as described in section 2.7) as a base for
learning decisions. Matters change if players use long memory. This case is displayed
in the bottom like of figure 7. Here we see that introducing stochastic behavior has
almost no influence on the proportion of cooperation.

Further we see that the model described in section 3.3 hardly explains the res-
ults of stochastic interaction and short memory. At least it is not possible to give a
certain cluster size that explains cooperative and non-cooperative area. Both long
memory cases and the deterministic short memory result seem to be more compat-
ible with a fixed cluster size in the model of section 3.3.

To facilitate comparison with May and Nowak’s model we have carried out the
above discussion assuming that players use the learning rule ‘copy best player’. In
figure 8 we show the results for the ‘copy best strategy’ learning rule. It turns
out that changing the learning rule has little impact on the proportion of mutual
cooperation.
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Figure 8: Also with the ‘copy best strategy’ learning rule, we have that stochastic
learning eliminates cooperation only with ‘short memory’.

Observation 2 With simple (one-state) strategies introduction of stochastic beha-
vior may eliminate cooperation if players’ memory is short.

We have the following intuition for this property: With our evolutionary dynamics
players situations are changing permanently. Sometimes a cooperative player may
be surrounded by other Cs, sometimes she may be at the borderline of a cluster of
Cs. Obviously in the latter case she is more likely to learn to become a D. If players’
memory is long, the payoffs that she uses for her learning decision are not influenced
by her current situation. Given that cooperative players spend a larger part of their
lifetime within clusters of other Cs her payoff will be relatively high. However, if
a player’s memory is short, the payoffs that she uses for her learning decision are
influenced by her current situation. Only when she is close to some D players she
may learn to become a D but this is exactly the situation where her payoffs decrease.
With short memory this decrease can not be balanced by positive experiences with
C in the past. Thus, with short memory, cooperation is more vulnerable.

3.6 Introducing Discriminative Behavior

The above discussed simple (one-state) repeated game strategies forced players to
treat their neighbors without distinction. Either they had to play C against all of
them, or they played D. In the following we try to capture discriminative behavior,
assuming that players’ repeated game strategies can be represented as small (two-
state) automata as described in section 2.6. Each player uses only one automaton,
but this automaton can be in different states against different neighbors. Results
change substantially now.
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An alternative way to introduce automata which we will not use in the remainder
of the paper would be the following: A single automaton reacts on stage game
behavior in the players’ neighborhood and determines a single stage game strategy
that is played against all neighbors without discrimination. We will not follow such
an approach for two reasons:

• We want to study discriminative behavior, which requires individual stage
games strategies against any neighbor.

• Automata that react on the state of a whole neighborhood are more complex
than automata which react on the state of a single player. Related to this
argument is the fact that it would be much harder to select a small subset of
repeated game strategies for our simulations based on criteria such as small
complexity.

As mentioned above we assume now that players use ‘copy best strategy’ as defined
in section 2.8.2 as a learning rule. Most of the results we find hold for ‘copy best
player’ (see section 2.8.1) too.

We will start in sections 3.6.1 to 3.7.1 with simpler models where players learn
from short memory (as described in 6 on page 17) and where interaction is de-
terministic. Analyzing these simple models makes it already possible to understand
some important properties of spatial models which are still present in more complex
models. One of these properties that we want to discuss within the simple frame-
work is exploitation. Studying these simple models makes it also possible to see
their limitations. Sometimes deterministic interaction and short memory leads to
the growth of strange stage game and repeated game strategies. We will therefore
study in section 3.7.2 on page 43 a model where players learn from long memory
(as described in 7 on page 17) and where interaction is stochastic. Such a model is
sometimes harder to understand, but its properties are more robust and sometimes
more convincing that those of the simple models that we study in the following
paragraphs.

3.6.1 Deterministic Interaction and Stochastic Learning

In the following we study a model with deterministic interaction and stochastic
learning. Within this framework we already see that introduction of automata leads
to more cooperation.

We furthermore give a simple example of how exploitation and different payoffs
of coexisting repeated game strategies may survive in the population. This fea-
ture persists also with stochastic interaction, but can be understood easier in the
deterministic context.

The way we introduce stochastic behavior is similar to Glance and Huberman
(1993) who, too, analyzed a model where interaction was deterministic, but learning
was stochastic. Our model which in contrast to Glance and Huberman, allows for
automata as repeated game strategies shows that this might be not enough. We
will see that with stochastic learning, as long as interaction is still deterministic,
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Figure 9: Complex (two-state) strategies induce cooperation: 2-state-strategies, pI =
1, tL ∈ {10, . . . , 14}, copy-best-strategy, short memory, rL = rI = 1, network=80×
80.

funny strategies are surprisingly successful. These strategies disappear as soon as
interaction becomes stochastic.

More cooperation with complex automata: Let us first have a look at figure 9
on the next page where we display simulation results for a population that use
automata with less than three states as repeated game strategies.

Observation 3 Two-state automata lead to more cooperation than simple (one-
state) automata. If g > 2

3
predominantly only the pair of stage game strategies CC

is played.

This observation is explained easily. For one-state automata (see section 3.5) we
have already used the image of a cluster of Cs (always cooperating) surrounded
by Ds (always defecting) and, thus, motivated cooperation. With decreasing gains
from cooperation g the situation of a cluster of Cs becomes quickly uncomfortable
because Cs at the border of the cluster are exploited by their D-playing neighbors.
Thus, C dies out if rewards from cooperation g are substantially smaller than 1.
This is what we have summarized in observation 1.

To motivate the larger cooperative area with automata as repeated game
strategies, replace the cluster of Cs by a cluster of e.g. tit-for-tat-playing auto-
mata. Remember that with two-state automata initially tit-for-tat is present in the
network. A tit-for-tat playing automaton is able to cooperate with other tit-for-
tat playing automata inside the cluster, but cannot be exploited by Ds outside the
cluster. Thus, for the same region of payoffs where the Cs have to give up, the
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Figure 10: Why cooperation is more successful among automata.

tit-for-tat can still survive. Only if gains from cooperation are substantially lower
also cooperation of two-state automata breaks down.

Figure 10 on the following page gives an example. The example is similar to the
example we gave in the discussion of figure 5 but here we have replaced the Cs by
tit-for-tat automata which are denoted with T . Those T s which are surrounding
the D defect against the D but cooperate against other Cs. Thus, their payoff is
substantially higher than the payoff of the Cs in figure 5.18 When the D compares
payoffs of repeated game strategies that it can observe it finds that T is more suc-
cessful and will become a T . Since the only remaining D dies out the population
will remain forever in this state.

The above argument does, however, not imply that for all games and for all
dynamics tit-for-tat is more successful than D. Tit-for-tat may loose payoffs for two
reasons: First a newborn tit-for-tat can be exploited because it has not recognized
its defective opponent yet. Second automata like tit-for-tat might have difficulties to
synchronize with other tit-for-tats. Two tit-for-tats need not play CC all the time.
They might also alternate in playing CD and DC. For the payoffs of the game in
figure 10 this makes no difference. But if cooperation becomes more risky, e.g. play-
ing C against D results in a lower payoff, then T s could be substantially worse off.

18Since the payoff is slightly higher than 6 in this example, we call them T+
6 in this example.
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Figure 11: Deterministic interaction may favor odd strategies: 2-state-strategies,
pI = 1, tL ∈ {10, . . . , 14}, copy-best-strategy, short memory, rL = rI = 1,
network=80× 80.

Thus, it is no surprise to find games where even with automata cooperation breaks
down.

Exploitation In the following paragraph we will discuss how our evolutionary
dynamics may lead to inequalities — several repeated game strategies which all
survive in the long run but which achieve different payoffs.

In figure 9 on page 34 we have displayed how the proportions of stage game
strategies depend on the payoffs of the underlying game. Likewise we can analyze
the proportion of automata which are generating these stage game strategies. We
show here only the proportions of two automata, grim and blinker, which appear
very often. Figure 11 on the following page displays on the left the proportions of
grim and blinker in the g×h-space, similar to the way we represented the proportion
of pairs of strategies of the stage-game in section 3.4. We see that both repeated
game strategies are present in the long run for a wide range of payoffs.

The right part of figure 11 displays the relative success of the repeated game
strategies. Simulations that lead to a payoff of the repeated game strategy which is
higher than the average payoff of the whole population19 of a given repeated game
strategy are represented as a black circle. The position of this circle is given by the
payoffs g and h of the game. Circles are larger if the difference between a strategies

19Averages are taken over the last 50 periods of a simulation in order to exclude the influence
of cycles. To calculate the average the total payoff achieved with the respective repeated game
strategy was divided by the number of respective interactions.
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payoff and population payoff are larger. Simulations that lead to an average payoff
(per interaction) of the strategy which is smaller than the average payoff of the
population are represented as a crossed white circle. Circles are again larger the
larger the difference between average population payoff and strategies’ payoff. If
this difference becomes small the circle may become so small that only the cross
(which has a constant size) is visible. In cases where all automata use the same
stage game strategy average payoffs per interaction for all automata are identical
and get no circles and no crosses at all.

Grim receives in most of the cases an average payoff per interaction which is
higher than the average population payoff whereas blinker earns an average payoff
which is smaller than the average population payoff. So we come to the following
observation:

Observation 4 With complex (two-state) strategies heterogeneity (over strategies)
of average strategy payoff per interaction is high for a wide range of game-payoffs.

This was not the case for one-state automata, where for most payoffs either only
D or only C survived. Thus, the whole population had the same payoff there.

While we introduce this observation in a somewhat arbitrary environment (in
particular with deterministic interaction), it remains true for all other parametriza-
tions which we study in the following.

Notice that the above described heterogeneity of payoffs differs from the het-
erogeneity of strategies pointed out by Lindgren and Nordahl (1994). They find
that spatial evolution yields in contrast to global evolution starting from a homo-
geneous initial state in the long run a heterogoneous state in the sense that several
different strategies are distributed in ‘frozen patchy states’ over the network. In the
current and in the following section we try to show two related things: First even
a population which has not reached a static state (and will possibly never reach
one) can exhibit some stable properties, e.g. proportions of different strategies that
may achieve a stable level. Second, not only that strategies are heterogeneously
distributed over the network in such a state, in particular payoffs of strategies are
different.

3.7 A Simple Model of Exploitation and Support

In the following paragraph we will consider a simplified model, to explain why and
how blinkers are exploited by grim with synchronous interaction.

We will denote possible states of grim with GC and GD, depending on whether
grim is in its cooperative or its defective state. Similarly we denote possible states
of blinker with BC or BD. The average payoff per interaction of grim and blinker
in a given period will be denoted with ūG and ūB respectively.

In the following we will describe an evolutionary dynamics of a population that
has a cyclical structure. We define a cyclical equilibrium as follows:

Definition 1 (cyclical equilibrium) A cyclical equilibrium is a sequence of states
of a population that, once such a sequence is reached, given an evolutionary dynam-
ics, repeats forever.
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In the model that we consider below, all of our cycles will be of length one or two.
We will not only consider cycles of a complete state of the population, but also
cycles of average payoffs or cycles of proportions of strategies or pairs of strategies.
We will denote a cycle of any two objects a and b with the symbol dabe. When we
mention several cycles in the same context, like dabe and dcde then we want to say
that a happens in the same period as c and b happens together with d. A cycle of
length one can be denoted as e.g. dae. When we mention dae together with dbce we
want to say that a population alternates between a state where a happens together
with b and another state where a happens together with c.

For the simplified model that we discuss in this section we make the following
assumptions:

1. There are only two repeated game strategies present in the population: Grim
and blinker.

2. Players interact with each of their opponents in each period exactly once.

3. Players do not observe their neighbors’ payoffs but average payoffs of repeated
game strategies over the whole population. They use the ‘copy best strategy’
learning rule, i.e. when they learn they copy the strategy with the highest
average payoff (per interaction) in the population.

4. Players will learn very rarely. The individual learning probability in each
period is ε. We assume that ε→ 0.

The most crucial departure from our simulation model is assumption 3, i.e. that
learning is now based on average payoffs of the whole population and not of the
individual neighborhood. This simplifies the analysis drastic- ally.

Proposition 1 Under the above assumptions there are four possible classes of cyc-
lical equilibria.

1. A population that contains any proportion of
⌈
〈GC , GC〉

⌉
and d〈GD, GD〉e is

in a cyclical equilibrium.

2. A population that contains any proportion of the cycles of pairs⌈
〈BC , BC〉〈BD, BD〉

⌉
,
⌈
〈BD, BD〉〈BC, BC〉

⌉
and

⌈
〈BC , BD〉

⌉
is in a cyclical

equilibrium.

3. There are cyclical equilibria where in both periods average payoffs of grim and
blinker are equal.

4. There is a single cyclical equilibrium both grim and blinker are present and
have different payoffs at least in some periods.

This equilibrium has the property that payoffs alternate between ūG = ε · (1 +
2h)/2 < ūB = ε/2 and ūG = 1/2 > ūB = (g + h)/2.20 1/4 of the population

20g and h are parameters of the underlying game 5.
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consists of pairs d〈GD, GD〉e, 1/2 of the population consists of a cycle of pairs⌈
〈GD, BD〉〈GD, B

C〉
⌉

and 1/4 of the population consists of a cycle of pairs⌈
〈BD, BD〉〈BC , BC〉

⌉
.

The proof is given in appendix A on page 50.
The case that we have observed in the previous simulation corresponds to case

4 in the above simplified model. We see how it can happen that one repeated game
strategy earns substantially less than average payoff but still does not die out. In
our simplified example blinker could replicate in exactly the same number of periods
and at the same speed as grim. It could do so, because each second period blinker
had more than average payoff. Still, while blinker is sometimes more successful
than grim it is only an ε more successful. When each second period grim is more
successful than blinker, grim does not only earn an epsilon more but substantially
more. Thus, over time grim earns more than blinker but still keeps blinker alive,
due to a few newborn and cooperating blinkers which give blinker a slight advantage
which is enough to make it survive.

Exploitation and favorable environments: We can interpret the above phe-
nomenon as blinkers being part of a favorable environment that is created by grim.
The latter ‘feeds’ sometimes (when it is born) its environment with a C. This fa-
cilitates reproduction of blinkers which quickly turn grim into its second state and
which are successfully exploited from now on.

The kind of ‘symbiosis’ of two automata, where one gains substantially more
payoff, but sometimes feeds the other and, thus, causes it to replicate is typical for
this spatial model.

This case gives a nice example for the common fact that exploitation is always
reciprocal. Figure 12 on the following page shows the relative proportions of pairs of
stage game strategies that are encountered by grim. The size of the circles is again
proportional to the proportion of the respective pair of stage game strategies.

One could have expected that grim never experiences CD. In figure 12 we see
that indeed grim does not play very often C against a D. Still CDs occur in the
same range of games where we also find DC. If we interpret CD as ‘support’ and
DC as ‘exploitation’, we can formulate the following observation:

Observation 5 An automaton that exploits others has to support its victims at least
sometimes.

Grim cannot experience DC always because then its opponent would encounter low
payoffs and copy next time a more successful repeated game strategy (e.g. grim).
Instead in equilibrium it has to play CD sufficiently often to keeps its opponent
alive.

Odd strategies Not only do the two automata grim and blinker give us a nice
example for unequal payoffs of repeated game strategies that survive in the long
run, furthermore blinker gives a good example for an unreasonable repeated game
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Figure 12: Exploiters have to ‘feed’ their victims at least sometimes: The pairs of
stage game strategies that are encountered by grim.
2-state-strategies, pI = 1, tL ∈ {10, . . . , 14}, copy-best-strategy, short memory, rL =
rI = 1, network=80× 80.

strategy that is eliminated once we add stochastic interaction to the already present
stochastic learning. Figure 14 on page 42 show again population shares and relative
payoffs for grim and blinker. Grim is still present for most of the population and
achieves more than average payoff (if we are not in a payoff range where everybody
cooperates). But now blinker is almost completely eliminated:

Observation 6 Deterministic interaction favors (together with stochastic learning)
the appearance of ‘odd’ repeated game strategies like the blinker.

In the following paragraph we will consider a simplified model to explain why and
how blinkers are exploited by grim with synchronous interaction.

3.7.1 Stochastic Interaction, Stochastic Learning, Learning from Short
Memory

Above we tried to illustrate in which way deterministic interaction is an abstract
assumption and that properties of a dynamics with deterministic interaction vanish
with synchronous interaction. If we disturb the dynamics introducing stochastic
interaction the large cooperative payoff region persists, but odd automata disappear.

In the following we assume that in each period each single interaction takes place
with probability pI = 1/2. Interactions are independent events, i.e. the probabil-
ity that a certain interaction takes place is not influenced by the fact that other
interactions take place.
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Figure 13: Complex (two-state) strategies induce cooperation also with stochastic
interaction: 2-state-strategies, pI = 1

2
, tL ∈ {20, . . . , 28}, copy-best-strategy, short

memory, rL = rI = 1, network=80× 80.

Let us first check the proportion of cooperation that is displayed in figure 13.

Observation 7 With stochastic interaction complex (two-state) automata induce
an even larger cooperative payoff region than with deterministic interaction.

The argument for a large cooperative area here is similar to the one we gave for
observation 3 on page 34. Again repeated game strategies like grim protect them-
selves against defectors and may be able to cooperate with other cooperators. Thus
mutual cooperation can be sustained more easily.

Elimination of odd strategies: Above we have found that deterministic inter-
action gives rise to odd repeated game strategies like the blinker. In figure 14 we
see that stochastic interaction eliminates this funny property.

Blinkers grow in a deterministic setting because they can be synchronized with
their neighbors. Introduction of stochastic interaction disturbs the synchronization.
Therefore, with stochastic interaction blinkers are mostly seen in a payoff region
outside the prisoners’ dilemma. The triangle where we find blinkers is exactly the
region where playing a correlated pair of stage game strategies that puts weights
1/2 both on CD and DC Pareto dominates all other strategies. Once synchronized
it is very easy for the blinker to follow this strategy.

Average payoff of blinkers is again lower than the average population payoff,
whereas the average payoff of grim is higher. In this setting grim has found other
neighbors to exploit.
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Figure 14: Stochastic interaction eliminates odd repeated game strategies: 2-state-
strategies, pI = 1

2
, tL ∈ {20, . . . , 28}, copy-best-strategy, short memory, rL = rI = 1,

network=80× 80.

Learning from short memory Up to now we have always assumed that the
learning decision is based on the short memory (as described in section 2.7). We
made this assumption to allow for a comparison with May and Nowak’s results.

A critique against this approach can be motivated with figure 13 on the page
before. Let us consider games with g < 0. These games are no prisoners’ dilemmas
anymore. We have still carried out some simulations with games of this type which
are displayed at the lower edges of the diagrams in figure 13

Observation 8 Lack of memory leads to pairs of stage game strategies CD and
DC, even in games were DD is the Pareto dominant pair of strategies.

In games with g < 0 irrationality of C-playing players is even harder to justify than
in the prisoners’ dilemma (0 < g < 1). For a prisoners’ dilemma C is irrational on
the individual level but still socially desirable. In the context of prisoners’ dilemmas
CD can be explained as a failed attempt to achieve mutual cooperation.

Outside the range of prisoners’ dilemmas, with g < 0 the CC-payoff is smaller
than the DD-payoff, thus, C is neither individually nor socially desirable.

However, C can still appear in games with g < 0 if automata play both C
and D. They can successfully replicate while they are in their D state, given that
simultaneously enough neighbors are playing C in the stage game. This behavior is
again supported by a symbiosis of automata where one tries to exploit the other by
simultaneously motivating it to reproduce.
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Figure 15: 2-state-strategies, pI = 1
2
, tL ∈ {20, . . . , 28}, copy-best-strategy, long

memory, rL = rI = 1, network=80× 80.

The above observation shows that our assumption that players learn from short
(one-period) memory may have questionable implications. In many situations it
might be problematic to assume that players copy a repeated game strategy due to a
one-period success, while the same repeated game strategy receives on average (over
a complete cycle with its opponent) less payoff. In the following we will therefore
make the assumption that players have ‘long memory’ as described in section 2.7 on
page 16.

3.7.2 Stochastic Interaction, Stochastic Learning, Learning from Long
Memory

In section 3.7.1 we have analyzed an evolutionary process with learning from short
memory (as shown in figure 13 on page 41). In the current section we will assume
that players learn from long memory (see figure 15).

If we look at the frequency of CD in both cases we find the following:

Observation 9 Reciprocal exploitation is much more likely if learning depends only
on short memory than if learning relies on long memory.

This is also true for the region g < 0, i.e. the case where DD Pareto dominates CC.
With long memory exploiters cannot take advantage of the fact that yesterday’s
losses will be forgotten when their victim replicates. Comparing grim’s payoff in
figure 11 on page 37 with figure 14 on the page before we see that in both cases grim
receives more than average population payoff for a wide range of games. However,
the difference between grim’s payoff and average population payoff is larger with
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short memory. Grim is a typical case. For the other automata the following holds
as well:

Observation 10 The variance of payoffs over different automata is smaller with
learning from long memory.

To give an intuition for this observation assume an environment with only two
repeated game strategies, A and B. Call A’s average payoff (over time) ūA and the
variance of A’s payoff σ2

uA
. Similar B’s payoff has average ūB and variance σ2

uB
.

What we stated in observation 10 was that there is some variance in payoffs over
automata. Let us assume that ūA > ūB. Still B may be able to survive, if either
σ2
uB

or σ2
uA

is large enough. In this case there will always be some periods where
B’s current payoff is larger than A’s current payoff. Since ‘long memory’ reduces
the variance of payoffs over time for a given automaton the gap between ūA and ūB
must be smaller to allow for survival of B. But then the variance of average payoffs
over automata must be smaller, too.

Since ‘long memory’ reduces the variance of payoffs the gap between ūA and ūB
must be smaller to allow for survival of B.

The shape of the cooperative region: If we compare figure 13 on page 41 with
figure 15 we note that the shape of the cooperative region is different. The value of
h in figure 15 has more influence on the proportion of cooperation:

Observation 11 With increasing losses from exploitation (−h) gains from cooper-
ation (g) have to be higher to induce cooperative behavior with learning from long
memory than with learning from short memory.

This is different from learning with short memory. There we observed that h had
not much influence. In the discussion following observation 10 on the preceding
page we explained that with learning from short memory ‘bad’ experiences (CD)
have less influence on reproductive success. With learning from long memory on the
other hand their influence matters. The CD-payoff is given by the value of h. Thus,
figure 15 shows that the shape of the cooperative region is influenced by h.

Observation 12 CD and DC is played primarily in the region g < 1
2

+ 1
2
h.

Games in this region are not prisoners’ dilemmas, here alternation between CD and
DC Pareto dominates the Nash Equilibrium DD.

3.8 Coordination Games

We can apply the same analysis not only to the prisoners’ dilemma, but also to other
games. The game

Player II

Player
I

a b

a
g

g
−1

h

b
h

−1
0

0

(23)
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is a ‘coordination game’ for g > −1 and h < 0 (see figure 4 on page 24). The
game has two pure equilibria, one where both players play C, and another where
both players play D. Both players would prefer to coordinate on one of the two
equilibria.

Asking which equilibrium players might choose in the above game one might
argue that one equilibrium leads to a payoff of 0, the other to g for both players
respectively — hence they should coordinate on CC if g > 0 and on DD if −1 <
g < 0. We say that the respective equilibrium is the ‘Pareto dominant’.

Consider now a game where g = 1 (hence CC Pareto-dominates DD) and h =
−100. Here coordinating on CC involves more risk, because a deviation of the
opponent would lead to a painful payoff of −100. On the other hand coordinating
on DD leads to less payoff (if coordination succeeds), but is less painful for a player if
the opponent fails to coordinate. Therefore we might advise players to coordinate on
DD, which means following the principle of risk dominance. In the games described
in figure 4 on page 24 the equilibrium CC risk dominates DD if and only if g >
−1 − h. A thorough discussion of risk dominance is given in Harsanyi and Selten
(1988).

Recent work of Kandori, Mailath and Rob (1993) or Young (1993) suggest that in
a global model where players optimize myopically, evolution selects the risk dominant
equilibrium in the very long run. Ellison (1993) has studied a spatial model where
players optimize myopically and found that there the risk dominant equilibrium is
selected even faster than in the model of Kandori, Mailath and Rob (1993) or Young
(1993).

In section 3.3 we have already studied a simplified model of a continuum of
players and considered the situation of a learning player whose left neighbors all
play C and whose right neighbors all play D. In Ellison’s model a myopically
optimizing player will calculate that chances to meet either a C or a D are equally
1/2 and therefore select the risk dominant equilibrium.

In the continuous model of section 3.3 a player who imitates successful strategies
behaves differently than Ellison’s myopically optimizing player. She will in the same
situation become a C if

g > (−1− h)
4− n

4 + n
(24)

where n ≤ 2 describes the size of the cluster. Clusters with a diameter larger than
2 times the neighborhood radius can be treated as n = 2. While in a prisoners’
dilemma clusters are often small21 we have large clusters in coordination games.
Thus we can assume n = 2. The gray line in figure 16 describes the set of games
where g = (−1−h)/3, i.e. the case where for n = 2 the expressions on both sides of
inequality 24 are equal.

Observation 13 It is almost precisely the line g = (−1 − h)/3 which divides the
region where only C is played from the region where only D is played. CD’s which
fail to coordinate are extremely rare.

21Small groups of defectors are successful. As soon as they start growing they kill themselves.
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Figure 16: Coordination games with two-state-strategies: pI = 1
2
, tL ∈ {20, . . . , 28},

copy-best-strategy, long memory, rL = rI = 1, network=80× 80.

In particular the continuous model described in section 3.3 explains the behavior of
the discrete population substantially better than Pareto dominance or risk domin-
ance.

3.9 The Influence of Locality

A particular feature of the model analyzed so far was the assumption that learning
and interaction was local. Figure 17 on the next page shows what happens if we
move gradually to a global model. We have chosen here a smaller torus of size
only 21 × 21 because we want to move all the way from a local to a global model.
A learning and interaction radius r of 10 means here that a player learns from the
whole population and interacts with the whole population, smaller values for r stand
for more local evolution and interaction. To save space we have only displayed the
proportion of mutual cooperation.

We first observe that the smaller network size (only 21 × 21 compared with
80×80 in the previous examples) does not affect the results. Comparison of the top
left diagram in figure 17 on the preceding page (rL = 1) with figure 15 on page 44
(rL = 1, but a larger network) shows no influence of the size of the network.

We furthermore see that the proportion of cooperation decreases gradually while
the model becomes a more global one. Figure 17 on the preceding page shows that
it does not matter whether the radius of the neighborhood is e.g. three or four, but
that it matters whether evolution operates on a local level at all. The bottom right
diagram in figure 17 shows the global model with 441 players which all learn from
each other and all interact with each other. Here the cooperative region has become
substantially smaller.

We have carried out two similar exercises. In the first we kept the learning radius
rL fixed and varied the interaction radius rI. In the second we varied the learning
radius rL while the interaction radius rI was held constant. The results are similar to
the above. Increasing either the learning or the interaction radius reduces gradually
the size of the cooperative area. Thus, both locality of evolution and locality of
interaction are responsible for cooperation.
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Figure 17: The influence of locality, two-state-strategies, pI = 1
2
, tL ∈ {20, 28},

copy-best-strategy, long memory, network=21× 21.
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Figure 18: Proportion of mutual cooperation in 1. . . 4-dimensional networks: 2-
state-strategies, pI = 1

2
, tL ∈ {20, . . . , 28}, copy-best-strategy, long memory.

3.10 Other Dimensions

Beyond the results that we presented above we have carried out many further sim-
ulations, each showing that the effects that we pointed out here persist for several
modifications of the model. One possible modification is e.g. the change from a
two-dimensional torus to tori with other dimensions.22 Figure 18 on the next page
shows the proportion of mutual cooperation for networks in several dimensions. All
networks have 4096 players and all neighborhoods have almost the same number
(80 . . . 125) of opponents. Notice that the cooperative area is slightly smaller than
the one of figure 15 on page 44. This is due to the fact that the neighborhoods in
figure 15 contain a much smaller number of players. The main point here is to note
that the dimension of the network has almost no effect on the size of the cooperative
area.

4 Conclusions

Among the questions that we followed above we would like to summarize the fol-
lowing points:

22We are grateful to George Mailath who suggested to carry out the following simulations.
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A continuous approximation of a discrete network In section 3.3 we have
sketched a model of a continuous population distributed on a line, divided
into clusters of different strategies. This approach is similar to an idea used by
Ellison (1993). We then assume that the size of the clusters is constant. Thus,
the behavior of players which are located on the borderlines of the clusters
can be analyzed easily. The behavior of our simulated networks fits with the
predictions given by the continuous population model if timing is stochastic.
In particular this model gives an accurate description of the conditions that
lead either to the selection of risk dominant or Pareto dominant equilibria in
coordination games.

More cooperation with discriminative behavior We analyzed the effect of in-
troducing discriminative behavior, modeled as automata, into a population.
One might have guessed that cooperation would be more stable if players use
simple strategies. Players that are capable of using more complex strategies
might move quicker to a more rational solution. Instead it turns out that more
complexity fosters cooperation.

Payoffs vary among strategies in the long run While inequality might be a
common phenomenon, global evolution can hardly explain it. Local evolution
and interaction allows for symbioses of strategies where one partially feeds but
mainly exploits the other. In section 3.7 we have explained with the help of a
simple model that different payoffs appear together with a cyclical structure
of the payoffs: In some periods strategy a is more successful, in other periods
strategy b. If during periods when b is more successful the payoff difference
between a and b is only small, while during periods when a is more successful
the payoff difference is large, then a’s payoffs will be higher on average but bs
may still survive.

Stochastic timing does not necessarily eliminate cooperation We have
tried to respond to a criticism raised by Huberman and Glance (1993) who
argued that stochastic timing might eliminate cooperation completely. While
this is doubtlessly true for the model studied by Huberman and Glance, we
found that for other reasonable models stochastic timing has no influence
on the amount of cooperation at all. In particular stochastic timing seems
not to affect cooperation if we allow for more complex strategies (automata),
regardless whether we are in the Huberman and Glance framework or not.

Stochastic timing not only for learning but also for interaction
Huberman and Glance assume that only learning is a stochastic event.
In their model interaction is still deterministic. We have given an example
for stochastic learning and deterministic interaction where the evolutionary
system got stuck into odd patterns of behavior. We think that stochastic
timing of the update of the strategy and stochastic interaction are preferable
and avoid these artificial effects.
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We have not investigated many other learning rules yet. The learning rules that we
use in this paper have two important properties:

• Our learning rules are deterministic in the sense that players always learn a
‘best’ strategy, no matter how much better this ‘best’ strategy is compared to
other strategies. This is certainly a property that stabilizes long-run unequal
payoffs. Long-run inequalities persist in a system since some strategies grow in
periods when they are only slightly better than other strategies, while others
grow in other periods, when they are much better than the former.

• Our learning rules are asymmetric in the sense that any information found in
the neighborhood is equally valuable, whether it comes from a distant player
(who might face a significantly different environment) or from the player her-
self.

We have done some simulations that use a variant of genetic algorithms (some-
times players copy a repeated game strategy, sometimes they copy a learning rule
— see Kirchkamp and Schlag (1995)) in order to let players choose themselves their
preferred degree of asymmetry of learning rules. In these simulation learning rules
evolve which are both asymmetric and stochastic. They lead to less cooperation
than the learning rules which we investigated in the current paper. We suspect that
it is not the property to be asymmetric but the property to be be stochastic that
lead to less cooperation in these simulations. Still in this area a lot of work has to
be done.

A Proof of Proposition 1

In the following we will denote a pair of two automata a and b with the symbol
〈a, b〉. For notational convenience we will make no distinction between 〈a, b〉 and
〈b, a〉

1 If there are only grims in the population, then only 〈GC , GC〉, 〈GC , GD〉 and
〈GD, GD〉 are possible. 〈GC , GD〉 is unstable, thus, only 〈GC , GC〉 and 〈GD,
GD〉 will remain in the population. Given any proportion of 〈GC , GC〉 and
〈GD, GD〉 no player will ever learn, since there are no alternative repeated
game strategies to observe.

2 If there are only blinkers in the population, then only
⌈
〈BC , BC〉〈BD, BD〉

⌉
,⌈

〈BD, BD〉〈BC , BC〉
⌉

and
⌈
〈BC, BD〉

⌉
are possible. All of these cycles of pairs

are stable. No player will ever learn, since there are no alternative repeated
game strategies to observe.

3 Trivially a state where possibly payoffs cycle, but nevertheless in all periods
grim and blinker achieve the same payoff is an equilibrium, since no player
ever has any reason to learn. An example for such an equilibrium might
be a population where 1/4 are cycles

⌈
〈BC, BC〉〈BD, BD〉

⌉
, 1/4 are cycles⌈

〈BD, BD〉〈BC , BC〉
⌉
, (1 + h)/(4g) are

⌈
〈GC , GC〉

⌉
and (2g − 1− h)/(4g) are
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d〈GD, GD〉e where g and h are parameters of the underlying game 5 on page 12
(of course not for all, but at least for some values of g and h the above pro-
portions are all in [0, 1]). In this case average payoffs of blinkers and grims is
in each period (1 + h)/2.

This equilibrium is not stable. Change the proportion of a cycle that contains
blinkers only slightly and payoffs of blinkers start cycling around the average
population payoff. In the discussion of case 4 which is described below we
will see that once such a state is reached, the cycling becomes stronger and
stronger until the equilibrium of case 4 is reached.

4 〈GC , GC〉, 〈GD, GD〉, 〈GD, BD〉, 〈BD, BD〉, 〈BC , BC〉 all belong to a stable
cycle in the sense that after a limited number of transitions each pair will
return to its original state. Unstable pairs are the remaining ones 〈GC , GD〉,
〈GC , BC〉 and 〈GC , BD〉. Unstable pairs can only be present in a cyclical
equilibrium if they are introduced through learning. Since we take the limit of
the the learning rate ε→ 0, the proportion of unstable pairs in the population
will be 0 as well. Thus, in a cyclical equilibrium we have only stable pairs.

All stable pairs belong to cycles of length either one or two. Therefore average
payoffs in a cyclical equilibrium also form a cycle of length either one or two.

A cyclical equilibrium with both grim and blinker present in the population
must have average payoffs of grim and blinker respectively belonging to a cycle
of length two. Otherwise one repeated game strategy would have always more
than average payoff, which together with our learning rule, copy always the
best average strategy, leads to the extinction of the other strategy. Let us
without loss of generality assume that average payoffs form a two cycle with
dūB > ūG, ūG > ūBe. Thus, in the first period of each cycle ūB > ūG, in the
second ūG > ūB.

Figure 19 on the following page shows now the dynamics of stable pairs. Let
us give one example how to determine the transitions. There is some flow
away from the cycle

⌈
〈BC , BC〉〈BD, BD〉

⌉
. In the second period of the cycle,

when ūG > ūB, a 〈BD, BD〉 has with probability ε an opportunity to learn,
which will then lead (in the first period of the next cycle) to a pair 〈GC , BC〉.
The pair 〈GC , BC〉 is an unstable pair which becomes in the second period
of the current cycle a 〈GD, BD〉. The latter is a member of the stable cycle⌈
〈GD, B

C〉〈GD , BD〉
⌉
. Since we have two blinkers in the pair 〈BD, BD〉 the

total flow away from the cycle
⌈
〈BC , BC〉〈BD, BD〉

⌉
has speed 2ε. Since we

consider the case ε → 0 we can neglect the case that both members of a pair
learn simultaneously.

When we consider all transitions given in figure 19 we see that only the
three cycles d〈GD, GD〉e,

⌈
〈GD, BD〉〈GD, B

C〉
⌉

and
⌈
〈BD, BD〉〈BC , BC〉

⌉
will

remain in the population in the long run. Given the flow between these
three cycles we see that 1/4 d〈GD, GD〉e, 1/2

⌈
〈GD, BD〉〈GD, B

C〉
⌉

and 1/4
of
⌈
〈BD, BD〉〈BC , BC〉

⌉
are a stable equilibrium.
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⌈
〈GC , GC〉

⌉

d〈GD, GD〉e
d〈GD, BD〉,
〈GD, B

C〉e
d〈BD, BD〉,
〈BC, BC〉e

d〈BC, BC〉,
〈BD, BD〉e

d〈GD, B
C〉,

〈GD, BD〉e

⌈
〈BC, BD〉

⌉
Transitions with speed 2ε are shown with double lines. Speed ε is shown with single
lines. Transitions that take place in the second period are shown with dashed (single
or double) lines. The first period is shown with solid lines.

Figure 19: Transitions of cycles of stable pairs if payoffs cycle like
dūB > ūG, ūG > ūBe.

Now let us look at the payoffs. In the first period of a cycle almost all pairs mu-
tually defect, i.e. they get, given the game 5 on page 12, a payoff of zero. Nev-
ertheless a few pairs are always present which actually learned a new strategy.
Thus, we have ε/2 of 〈GC , GD〉 and ε/2 of 〈GC , BD〉. Therefore payoffs are in
the first period of a cycle as follows:

ūG =
ε

2
(1 + 2h) < ūB =

ε

2

In the second period of a cycle learning players are negligible:

ūG =
1

2
> ūB =

1

2
(g + h)

Thus, indeed a cycle of payoffs like dūB > ūG, ūG > ūBe exists.�
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